Σχεδιασμός Δομικών Εργών από Χαλύβα με Παραδείγματα Εφαρμογής

Ιωάννης Κ. Βάγιας, Ιωάννης Χ. Ερμόπουλος, Γεώργιος Ι. Ιωαννίδης
Περιεχόμενα

Πρόλογος .. 19

ΜΕΡΟΣ Ι
ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ... 21

Κεφάλαιο 1
Βασικές αρχές σχεδιασμού ... 23

1.1 Γενικά – Δράσεις επί των κατασκευών ... 23
 1.1.1 Μόνιμες δράσεις .. 26
 1.1.2 Επιβαλλόμενες (μεταβλητές) δράσεις ... 27
 1.1.3 Φορτίο χιονιού .. 29
 1.1.4 Δράσεις ανέμου ... 32
 1.1.5 Σεισμικές δράσεις ... 36
 1.1.6 Άλλες δράσεις ... 40

1.2 Οριακές καταστάσεις ... 41

1.3 Συνδυασμοί δράσεων .. 43
 1.3.1 Οριακή κατάσταση αστοχίας ... 43
 1.3.2 Οριακή κατάσταση λειτουργικότητας .. 46

1.4 Υλικά ... 46
Περιεχόμενα

Κεφάλαιο 2

Ανάλυση φορέων

2.1 Γενικά

2.2 Προσομοίωμα ανάλυσης

2.3 Μέθοδοι ανάλυσης

2.3.1 Ελαστική ανάλυση

2.3.2 Πλαστική ανάλυση

2.3.3 Ειδικές κανονιστικές διατάξεις

2.4 Ατέλειες

2.4.1 Γενικά

2.4.2 Ατέλειες για ανάλυση πλαισίων

2.4.3 Ατέλειες για την ανάλυση συστημάτων δυσκαμψίας

2.4.4 Τοπικές ατέλειες (ατέλειες μελών)

2.5 Κατάταξη διατομών

Κεφάλαιο 3

Οριακές καταστάσεις αστοχίας

3.1 Γενικά

3.2 Αντοχή διατομών

3.2.1 Γενικά

3.2.2 Ιδιότητες διατομών

3.2.3 Εφελκυσμός

3.2.4 Θλίψη

3.2.5 Μονοαξονική (ή απλή) Κάμψη

3.2.6 Τέμνουσα

3.2.7 Στρέψη

3.2.8 Κάμψη και τέμνουσα

3.2.9 Κάμψη και αξονική δύναμη

3.3 Αντοχή μελών

3.3.1 Γενικά

3.3.2 Καμπτικός λυγισμός λόγω αξονικής θλιπτικής δύναμης

3.3.3 Ισοδύναμο μήκος λυγισμού θλιβόμενων μελών

3.3.4 Στρεπτικός λυγισμός

3.3.5 Στρεπτοκαμπτικός λυγισμός

3.4 Θλιβόμενα μέλη πολυμελούς σταθερής διατομής

3.4.1 Γενικά

3.4.2 Δικτυωτά θλιβόμενα μέλη πολυμελούς διατομής

3.4.3 Θλιβόμενα μέλη πολυμελούς διατομής με λεπίδες σύνδεσης
3.4.4 Πολυμελείς διατομές με μικρή απόσταση μεταξύ των κυρίων μελών ... 159
3.5 Αντοχή διατομών και ευστάθεια μελών σε συνθήκες πυρκαγιάς .. 160
 3.5.1 Γενικά .. 160
 3.5.2 Απαιτήσεις ασφάλειας-Διαδικασίες σχεδιασμού .. 162
 3.5.3 Μέθοδοι ελέγχου ... 163
 3.5.4 Μηχανικές και θερμικές ιδιότητες των συνήθων χαλύβων 164
 3.5.5 Σχεδιασμός έναντι πυρκαγιάς .. 169

Κεφάλαιο 4
Οριακές καταστάσεις λειτουργικότητας .. 187
4.1 Μετατοπίσεις (βέλη) .. 187
4.2 Δυναμικές επιρροές .. 189
4.3 Οριακές τιμές ... 189

Κεφάλαιο 5
Συνδέσεις .. 191
5.1 Γενικά ... 191
5.2 Κοχλίες και εξαρτήματα ... 202
5.3 Διάταξη κοχλίων .. 204
5.4 Κατηγορίες κοχλιωτών συνδέσεων και αντοχές κοχλίων 207
 5.4.1 Συνδέσεις διάτμησης .. 207
 5.4.2 Συνδέσεις εφελκυσμού ... 208
5.5 Ομάδες κοχλίων υπό διάτμηση .. 214
 5.5.1 Ομάδα κοχλίων υπό κεντρική δύναμη .. 214
 5.5.2 Γωνιακά συνδεόμενα με το ένα σκέλος ... 215
 5.5.3 Απόσχιση τεμαχίου ... 216
 5.5.4 Ομάδα κοχλίων υπό έκκεντρη δύναμη .. 217
5.6 Συγκολλήσεις ... 219
 5.6.1 Γενικά ... 219
 5.6.2 Εσωραφές .. 219
 5.6.3 Εξωραφές .. 220
 5.6.4 Ραφές πλήρωσης οπής ή σχισμής .. 222
 5.6.5 Ψευδο-εσωραφές ... 223
5.7 Αντοχές συγκολλήσεων ... 223
 5.7.1 Αντοχή εσωραφών .. 223
 5.7.2 Αντοχή εξωραφών .. 225
 5.7.3 Αντοχή ραφών οπής-σχισμής ... 225
 5.7.4 Μακρές συνδέσεις .. 226
章节

第6章

引言

6.1 引言。优势和劣势将金属组织
6.2 其中典型单层房屋
6.3 选项

第7章

主要实体

7.1 一般。最佳距离之间的主要实体
7.2 金属屋顶，它们位于顶部结构
7.2.1 一般
7.2.2 形式，创建水平屋顶
7.2.3 组成
7.2.4 步骤
7.2.5 笼形
7.2.6 盆栽
7.2.7 网格
7.2.8 螺栓
7.2.9 锚
7.3 与整体结构
7.3.1 一般
7.3.2 形式
7.3.3 分析，周围和结构
7.4 与整体和屋顶
7.5 在那些与升降机
7.5.1 一般
Σελίδα 11

7.5.2 Τα φορτία από τις γερανογέφυρες ... 299
7.5.3 Διαστασιολόγηση της δοκού κυλίσεως .. 306
7.5.4 Άλλα κατασκευαστικά στοιχεία για τις δοκούς κυλίσεως και τις τροχιές ... 314
7.5.6 Γερανογέφυρες οροφής - Μονοτροχιές .. 321
7.6 Πλαίσια ειδικών μορφών .. 322

Κεφάλαιο 8
Οι σύνδεσμοι δυσκαμψίας .. 329
8.1 Γενικά .. 329
8.2 Οι οριζόντιοι σύνδεσμοι δυσκαμψίας .. 329
8.2.1 Κύριες λειτουργίες .. 329
8.2.2 Εναλλακτικές διατάξεις .. 330
8.2.3 Γενική διάταξη οριζόντιων συνδέσμων δυσκαμψίας. Κατανομή της έντασης ... 337
8.2.4 Η επικάλυψη ως διάφραγμα ... 339
8.3 Οι κατακόρυφοι σύνδεσμοι δυσκαμψίας ... 340
8.3.1 Γενικά .. 340
8.3.2 Γενική διάταξη .. 341
8.3.3 Αξιολόγηση διαφόρων μορφών κατακόρυφων συνδέσμων δυσκαμψίας. Χρησιμοποιούμενες διατομές ... 343
8.3.4 Ικανοτικοί περιορισμοί .. 348

Κεφάλαιο 9
Δομικά στοιχεία για τη συμπλήρωση του κελύφους του κτιρίου ... 351
9.1 Γενικά .. 351
9.2 Οι τεγίδες .. 351
9.2.1 Γενικά. Χρησιμοποιούμενες διατομές ... 351
9.2.2 Στατικές μορφές των τεγίδων .. 355
9.2.3 Η τοποθέτηση ελκυστήρων .. 357
9.2.4 Συμπεριφορά των τεγίδων ... 359
9.2.5 Κατασκευαστικά και άλλα θέματα σχετικά με τις τεγίδες 361
9.3 Μετωπικοί στύλοι ... 365
9.3.1 Διάταξη – Χρησιμοποιούμενες διατομές .. 365
9.3.2 Στατικές μορφές. Κατασκευαστικές λεπτομέρειες .. 365
9.3.3 Διαμόρφωση των μετώπων ... 369
9.4 Οι μηκίδες .. 372
Κεφάλαιο 10
Θεμελίωση .. 375
10.1 Γενικά .. 375
10.2 Κατασκευαστικές λεπτομέρειες εδράσεων 377

Κεφάλαιο 11
Ανέγερση .. 385
11.1 Γενικά .. 385
11.2 Η μελέτη ανέγερσης .. 388
11.3 Γενικές αρχές και διαδικασίες ανέγερσης 389
11.4 Άλλα θέματα συνδεόμενα με την ανέγερση 394

Μέρος II: Βιβλιογραφία .. 396

ΜΕΡΟΣ III
ΠΟΛΥΩΡΟΦΑ ΜΕΤΑΛΛΙΚΑ ΚΤΙΡΙΑ .. 399

Κεφάλαιο 12
Εισαγωγή στα πολυώροφα μεταλλικά κτίρια 401
12.1 Εξέλιξη των μεταλλικών κτιρίων 401
12.2 Τα στοιχεία του πολυώροφου μεταλλικού (χαλύβδινου) κτιρίου .. 405
12.3 Πλεονεκτήματα–μειονεκτήματα πολυώροφων μεταλλικών κτιρίων 408

Κεφάλαιο 13
Μόρφωση του φορέα .. 409
13.1 Γενικά .. 409
13.2 Πλάκες ... 410
13.2.1 Γενικά .. 410
13.2.2 Σύμμικτες πλάκες (fast track) 410
13.2.3 Πλάκες από οπλισμένο σκυρόδεμα 416
13.2.4 Πλάκες χωρίς δοκούς (slim floors) 416
13.3 Δευτερεύουσες δοκοί ... 417
13.4 Κύριες δοκοί .. 423
13.5 Υποστυλώματα .. 425
Κεφάλαιο 14
Ανάλυση του φορέα ... 457

14.1 Σύμμικτες πλάκες ... 457
 14.1.1 Φάση κατασκευής ... 457
 14.1.2 Φάση λειτουργίας ... 459
14.2 Δευτερεύοντες δοκοί ... 460
 14.2.1 Φάση κατασκευής ... 461
 14.2.2 Φάση λειτουργίας ... 462
14.3 Κύριες δοκοί φορέων με κατακόρυφους συνδέσμους 464
 14.3.1 Λαμψίρειστες κύριες δοκοί .. 464
 14.3.2 Συνεχείς κύριες δοκοί σε φορείς με συνδέσμους δυσκαμψίας ... 467
14.4 Κύριες δοκοί σε πλαίσιακούς φορείς ... 474
 14.4.1 Φάση κατασκευής ... 474
 14.4.2 Φάση λειτουργίας ... 475
14.5 Υποστυλώματα ... 476
14.6 Κόμβοι ... 477
14.7 Προσομοίωση και ανάλυση του φορέα ... 480
14.8 Ιδιότητες υλικών ... 483
ΜΕΡΟΣ IV
ΒΙΟΜΗΧΑΝΙΚΗ ΚΑΤΕΡΓΑΣΙΑ, ΑΝΕΓΕΡΣΗ, ΠΟΙΟΤΙΚΟΣ ΕΛΕΓΧΟΣ

Κεφάλαιο 15
Βιομηχανική κατεργασία, ανέγερση και ποιοτικός έλεγχος

15.1 Γενικά

15.2 Εργοστασιακή κατεργασία

15.2.1 Διακίνηση και αποθήκευση

15.2.2 Κοπή

15.2.3 Μορφοποίηση

15.2.4 Διάτρηση

15.2.5 Προετοιμασία ακραίων επιφανειών των προς συγκόλληση τεμαχίων

15.3 Συγκολλήσεις

15.4 Κοχλιώσεις

15.5 Επιφανειακή προστασία

15.5.1 Προετοιμασία επιφανειών

15.5.2 Βάσεις σχεδιασμού – συστήματα επιφανειακής προστασίας

15.5.3 Επιστρώσεις με χρώματα

15.5.4 Θερμό γαλβάνισμα (επιψευδαργύρωση)

15.5.5 Συστήματα Duplex (θερμό γαλβάνισμα + βαφή)

15.6 Πυράντοχες βαφές

15.7 Ανέγερση

15.7.1 Μεταφορά, αποθήκευση, ανύψωση

15.7.2 Προετοιμασία βάσεων

15.7.3 Εκθεση μεθόδου ανέγερσης

15.7.4 Ανέγερση-ακρίβεια

15.7.5 Ανοχές

15.8 Ποιοτικός έλεγχος

15.8.1 Υλικά

15.8.2 Συγκολλήσεις

15.8.3 Κοχλιώσεις

15.8.4 Επιφανειακή προστασία

15.8.5 Επιφάνειες ελέγχου

15.8.6 Διατμητικοί ήλοι

Μέρος IV: Βιβλιογραφία
ΠΕΡΙΕΧΟΜΕΝΑ 15
ΜΕΡΟΣ V
ΠΑΡΑΔΕΙΓΜΑΤΑ ΕΦΑΡΜΟΓΗΣ...559

Παράδειγμα 1 Συνδυασμοί δράσεων ..561
Παράδειγμα 2 Κατάταξη διατομής (μορφής Ι).................................569
Παράδειγμα 3 Κατάταξη κιβωτοειδούς διατομής575
Παράδειγμα 4 Καμπτόμενη δοκός από πρότυπη διατομή..................581
Παράδειγμα 5 Κάμψη δοκού σύνθετης διατομής –
Επιρροή της τέμνουσας ..585
Παράδειγμα 6 Αντοχή καμπτόμενης δοκού με λεπτότοιχη διατομή........591
Παράδειγμα 7 Επίλυση και έλεγχος δοκού με εναλλακτικές μεθόδους.....595
Παράδειγμα 8 Διατομή υπό ταυτόχρονη ροπή, τέμνουσα και
αξονική δύναμη..601
Παράδειγμα 9 Δοκός υπό διαξονική κάμψη και αξονικό εφελκυσμό......605
Παράδειγμα 10 Στρεπτοκαμπτικός λυγισμός δοκού διατομής
διπλής συμμετρίας ...609
Παράδειγμα 11 Στρεπτοκαμπτικός λυγισμός δοκού με διατομή
απλής συμμετρίας ...615
Παράδειγμα 12 Στρεπτοκαμπτικός λυγισμός καμπτόμενης δοκού
με ενδιάμεσες πλευρικές εξασφάλισεις621
Παράδειγμα 13 Τεγίδα μη συγκρατούμενη πλευρικά...........................625
Παράδειγμα 14 Τεγίδα συγκρατούμενη πλευρικά..............................631
Παράδειγμα 15 Υποστύλωμα υπό αξονική θλίψη...............................637
Παράδειγμα 16 Υποστύλωμα με ενδιάμεσες πλευρικές στηρίξεις
υπό αξονική θλίψη...641
Παράδειγμα 17 Μήκη λυγισμού υποστυλωμάτων ενταγμένων σε μονώροφο πλαίσιο ... 645
Παράδειγμα 18 Λυγισμός υποστυλώματος ενταγμένου σε πολυώροφο πλαίσιο .. 649
Παράδειγμα 19 Δοκός πλευρικά εξασφαλισμένη υπό θλίψη και κάμψη 655
Παράδειγμα 20 Καμπτικός και στρεπτοκαμπτικός λυγισμός υποστυλώματος .. 661
Παράδειγμα 21 Δοκός υπό θλίψη και κάμψη, χωρίς συνεχή πλευρική εξασφάλιση .. 671
Παράδειγμα 22 Υποστύλωμα με διατομή κατηγορίας 4 .. 679
Παράδειγμα 23 Υποστύλωμα με διατομή κατηγορίας 4 απλής συμμετρίας υπό θλίψη.. 683
Παράδειγμα 24 Υποστύλωμα με διατομή κατηγορίας 4 υπό θλίψη και κάμψη .. 689
Παράδειγμα 25 Έλεγχος κύρτωσης κορμού σύνθετης δοκού με εγκάρσιες ενισχύσεις .. 697
Παράδειγμα 26 Έλεγχος κύρτωσης κορμού σύνθετης δοκού κιβωτίου ειδούς διατομής με εγκάρσιες ενισχύσεις στα άκρα............. 705
Παράδειγμα 27 Κορμοί δοκών υπό συγκεντρωμένα φορτία......................... 711
Παράδειγμα 28 Στήριξη δευτερεύουσας επί κύριας δοκού 717
Παράδειγμα 29 Σύνθετο υποστύλωμα με ράβδους δικτύωσης 721
Παράδειγμα 30 Σύνθετο υποστύλωμα υπό θλιπτική δύναμη και καμπτική ροπή .. 725
Παράδειγμα 31 Σύνθετο υποστύλωμα με λεπίδες σύνδεσης 731
Παράδειγμα 32 Σύνθετες ράβδοι από δύο γωνιακά, που επιτρέπεται να θεωρηθούν ως μονομελείς .. 737
Παράδειγμα 33 Θλίψη κοίλης κυκλικής διατομής ενταγμένης σε δικτύωμα και έλεγχος κόμβου.......................... 739
Παράδειγμα 34 Έλεγχος συγκολλητού κόμβου δικτυώματος από ράβδους με κοίλες ορθογωνικές διατομές 745
Παράδειγμα 35 Σύνδεσμος στέγης υποστέγου ... 749
Παράδειγμα 36 Κατακόρυφος σύνδεσμος δυσκαμψίας – Αμετάθετο πλαίσιο ... 753
Παράδειγμα 37 Μεταθετό δύσκαμπτο πλαίσιο .. 759
Παράδειγμα 38 Μεταθετό εύκαμπτο πλαίσιο .. 771
Παράδειγμα 39 Μεταθετό πολύ εύκαμπτο πλαίσιο .. 783
Παράδειγμα 40 Κοχλιωτή σύνδεση εφελκυομένων ελασμάτων 795
Παράδειγμα 41 Αποκατάσταση συνέχειας εφελκυόμενης ράβδου 801
Παράδειγμα 42 Σύνδεση γωνιακού μέσω του ενός σκέλους του 809
Παράδειγμα 43 Μεταβολή της αντοχής σχεδιασμού κοχλιωτής σύνδεσης ανάλογα με τα γεωμετρικά και ποιοτικά χαρακτηριστικά της .. 811
Παράδειγμα 44 Κοχλίωση υπό εφελκυσμό και διάτμηση ... 819
Παράδειγμα 45 Προεντεταμένοι κοχλίες με αποσύσφιγξη 823
Παράδειγμα 46 Κοχλίωση με ροπή στο επίπεδό της ... 829
Παράδειγμα 47 Διατμητική αντοχή απόσχισης ... 837
Παράδειγμα 48 Απλή στήριξη δοκού σε δοκό ... 841
Παράδειγμα 49 Αρθρωτή σύνδεση μέσω πείρου .. 847
Παράδειγμα 50 Αποκατάσταση συνέχειας καμπτόμενης δοκού 853
Παράδειγμα 51 Συγκόλληση δύο γωνιακών σε κομβοέλασμα 861
Παράδειγμα 52 Συγκόλληση με ροπή στο επίπεδό της ... 863
Παράδειγμα 53 Συγκολλητός βραχύς πρόβολος ... 867
Παράδειγμα 54 Συγκόλληση υπό σύνθετη καταπόνηση..........................875
Παράδειγμα 55 Διακεκομμένη ραφή συγκόλλησης σε δοκό σύνθετης διατομής ...879
Παράδειγμα 56 Κοχλιωτή σύνδεση κορυφαίου κόμβου πλαισίου........885
Παράδειγμα 57 Κοχλιωτή σύνδεση δοκού-υποστυλώματος.............891
Παράδειγμα 58 Ακραίος συγκολλητός κόμβος δοκού-υποστυλώματος.....909
Παράδειγμα 59 Ενδιάμεσος συγκολλητός κόμβος δοκού-υποστυλώματος ...915
Παράδειγμα 60 Έδραση υποστυλώματος που καταπονείται από αξονική δύναμη ..919
Παράδειγμα 61 Έδραση υποστυλώματος που καταπονείται από αξονική δύναμη και ροπή περί τον ισχυρό άξονά του923
Παράδειγμα 62 Έδραση υποστυλώματος που καταπονείται από αξονική δύναμη και ροπή περί τον ισχυρό άξονά του929
Παράδειγμα 63 Έδραση υποστυλώματος που καταπονείται από αξονική δύναμη και ροπή περί τον ασθενή άξονά του935
Παράρτημα 1 ...941
Παράρτημα 2 ...965
Πρόλογος

Η διεύρυνση του πεδίου εφαρμογής των κατασκευών από χάλυβα στην Ελλάδα, καθώς επίσης η έκδοση των επίσημων τελικών κειμένων (EN) των Ευρωπαϊκών από τον Ευρωπαϊκό Οργανισμό Τυποποίησης (CEN) έχουν την ανάγκη πολύπλευρης τεχνικής υποστήριξης, η οποία μεταξύ άλλων, απαιτεί την ανανέωση της σχετικής τεχνικής βιβλιογραφίας στη συγκεκριμένη επιστημονική περιοχή. Έμφαση πρέπει να δίνεται τόσο στην παρουσίαση θεμάτων μόρφωση των διαφόρων δομικών έργων, από την οποία εξαρτάται η οικονομικότητα και λειτουργικότητα της κατασκευής, όσο, εξίσου, σε θέματα ποιοτικού ελέγχου και εξασφάλισης των προβλέψεων και παραδοχών της μελέτης, που αποτελούν προϋπόθεση της εφαρμογής της και κεντρικό ζήτημα ασφάλειας. Τα θέματα ανάλυσης και διαστασιολόγησης κατέχουν, αυτονόητα, τη σημαντική τους θέση στο σύνολο των προβλημάτων που έχει να αντιμετωπίσει ο πολιτικός μηχανικός. Τις παραπάνω αναγκές επιδιώκει να εξυπηρετήσει το παρόν βιβλίο, το οποίο χωρίζεται σε πέντε μέρη.

Στο πρώτο Μέρος παρουσιάζονται οι διατάξεις των τελικών αναθεωρημένων κειμένων (EN) και των αντίστοιχων Εθνικών Προσαρτημάτων του Ευρωκώδικα 3(EN 1993), Αναφορά γίνεται στις ιδιότητες των χαλύβων, τις οριακές καταστάσεις αντοχής και λειτουργικότητας, τις ελαστικές και πλαστικές αντοχές των διατομών, τις αντοχές των μελών έναντι καμπτικού, διατμητικού και στρεπτοκαμπτικού λυγισμού, στους κόμβους πλαισιωτόν κατασκευών και τις συνδέσεις. Αναλύονται οι κοχλιωτές και συγκολλητές συνδέσεις καθώς επίσης η αντοχή και δυσκαμψία κόμβων διαφόρων μορφών. Παρουσιάζονται ακόμη οι μεθόδοι ανάλυσης των φορέων σε συνδυασμό και με τα χαρακτηριστικά των κόμβων τους. Τέλος περιέχονται οι διατάξεις για τον έλεγχο των δομικών στοιχείων από χάλυβα σε ψηλές θερμοκρασίες.
Το δεύτερο Μέρος περιέχει κανόνες μόρφωσης και ανάλυσης μονώροφων κτιρίων, ως τον συνηθέστερο στην πράξη τύπον μεταλλικών κτασκευών, στα οποία λειτουργούν ή όχι γερανογέφυρες. Παρουσιάζονται τα κύρια συστατικά στοιχεία τέτοιου είδους κτιρίων, όπως κύριοι φορείς, ολόσωμοι ή δικτυωτοί, τεγίδες, μηκίδες, μετωπικά υποστυλώματα, οριζόντιων και κατακόρυφων σύνδεσμων δυσκαμψίας, εδράσεις υποστυλωμάτων, επικαλύψεις και πλευρικές επενδύσεις. Για τα επί μέρους στοιχεία, σχολιάζονται οι εναλλακτικές δυνατές λύσεις, με στόχο το βέλτιστο σχεδιασμό, η συμπεριφορά τους υπό κατακόρυφα και οριζόντια φορτία και οι τρόποι εξασφάλισης, συνολικά, της πλευρικής ευστάθειας της κατασκευής.

Στο τρίτο Μέρος παρουσιάζονται τα πολυώροφα μεταλλικά κτίρια, ως κτίρια με σύμμικτα στοιχεία, των οποίων δηλαδή η φέρουσα ικανότητα προκύπτει από συνεργασία χάλυβα και σκυροδέματος. Δίδονται γενικές συστάσεις για τη μόρφωσή τους με έμφαση στην εξασφάλιση της πλευρικής τους ευστάθειας, καθώς επίσης μέθοδοι προσομοίωσης και ανάλυσής τους.

Στο τέταρτο Μέρος πραγματεύεται τη βιομηχανική κατεργασία, την εργοταξιακή ανέγερση και τον ποιοτικό έλεγχο. Δίδονται πληροφορίες για τη διαμόρφωση του υλικού, τις μεθόδους εφαρμογής και προέντασης των κοχλιών, την επιφανειακή προστασία, τη μεταφορά και επί τόπου συναρμολόγησης, τέλος τον ποιοτικό έλεγχο των συγκολλήσεων και των άλλων κατεργασιών.

Στο πέμπτο Μέρος του βιβλίου περιέχει αριθμητικά παραδείγματα που καλύπτουν τα κυριότερα θέματα των Μερών 1.1 και 1.8 του Ευρωκώδικα 3, τα οποία έχουν μεγάλη συχνότητα εφαρμογής στις μελέτες και εκ τούτου σημαντικό ενδιαφέρον. Σε ορισμένα παραδείγματα, που δεν καλύπτονται από το γράμμα του κανονισμού, έχουν δοθεί λύσεις κατά το πνεύμα του, ενώ σε άλλα οι διατάξεις του κανονισμού έχουν ερμηνευθεί κατά την κρίση των συγγραφέων. Τα παραδείγματα, προς διευκόλυνση της παρακολούθησής τους, έχουν συνταχθεί κατά διεξοδικό και αναλυτικό τρόπο. Για την ευκολότερη συχζετιστή τους με το κείμενο του Κανονισμού, υπάρχουν στο δεξιά περιθώριο των σελίδων παραμορφώσεις, σχήματα ή τύπου του. Για την ευκολότερη αναγνώριση των παραδειγμάτων υπάρχουν στο δεξιά περιθώριο των σελίδων παραμορφώσεις, σχήματα ή τύπου του. Για την ευκολότερη αναγνώριση των παραδειγμάτων, είναι αυτονόητο, εν τούτοις, ότι το βιβλίο δεν υποκατάθεται σε καμία περίπτωση τον Ευρωκώδικα τον οποίο πρέπει να συμβουλεύεται ο μελέτητής.

Το βιβλίο απευθύνεται στους Μηχανικούς της πράξης, που ασχολούνται με τη μελέτη και κατασκευή δομικών έργων από χάλυβα, και στους σπουδαστές των Σχολών Πολιτικών Μηχανικών.

Οι συγγραφείς ευχαριστούν τον κ. Κοσμά Μουπαγιτσόγλου για τις πολύτιμες παρατηρήσεις του που συνέβαλαν στη διόρθωση των παραδειγμάτων εφαρμογής.
ΜΕΡΟΣ Ι

Διαστασιολόγηση
1 Βασικές αρχές σχεδιασμού

1.1 Γενικά – Δράσεις επί των κατασκευών

Στόχοι του μελετητή κατά το σχεδιασμό ενός έργου είναι η ασφάλεια, η οικονομία, η λειτουργικότητα, η ανθεκτικότητα και η αισθητική. Σημαντικός παράγων, ο οποίος δεν πρέπει να παραγνωρίζεται, ιδιαίτερα σε μεγάλα κτίρια ή μεγάλα τεχνικά έργα, είναι ο παράγων «εκτέλεση του έργου» (δηλαδή βιομηχανική προετοιμασία στο εργοστάσιο, μεταφορά και ανέγερση στο εργοτάξιο). Ο τρόπος εκτέλεσης, που επηρεάζει σημαντικά το κόστος του έργου, του οποίου βασικό στοιχείο είναι και η απαιτούμενη διάρκεια για την κατασκευή, πρέπει να λαμβάνεται σοβαρά υπόψη κατά το σχεδιασμό και να αντιμετωπίζεται από το μελετητή ως μια αλληλουχία φάσεων, σε κάθε μία από τις οποίες (ενδιάμεσες και τελική) θα πρέπει να εξασφαλίζεται η ασφάλεια του φορέα. Γενικότερα, όχι μόνο σε νεοανεγειρόμενα κτίρια, αλλά και σε υφιστάμενα, ή για το σχεδιασμό επισκευών και μετατροπών ή για την εκτίμηση των επιπτώσεων από αλλαγή χρήσης, θα πρέπει να εξετάζεται από το μελετητή κάθε νέα κατάσταση του φορέα, προκειμένου να εξασφαλίζεται το απαιτούμενο επίπεδο ασφάλειας και λειτουργικότητας.

Το βασικότερο κανονιστικό εργαλείο στα χέρια του μελετητή είναι το πλέγμα των Ευρωκώδικων, μέσω του οποίου καλύπτονται τα περισσότερα από τα θέματα, τα οποία αναφέρονται κατά το σχεδιασμό (μόρφωση, ανάλυση, διαστασιολόγηση κλπ) μιας κατασκευής.

Το πλέγμα αυτό περιλαμβάνει τα παρακάτω Ευρωπαϊκά Πρότυπα:

EN 1990 Ευρωκώδικας 0: Βασικές αρχές σχεδιασμού
EN 1991 Ευρωκώδικας 1: Δράσεις
ΜΕΡΟΣ Ι: Διαστασιολόγηση

ΕΝ 1992 Ευρωκώδικας 2: Σχεδιασμός Κατασκευών από Σκυρόδεμα
ΕΝ 1993 Ευρωκώδικας 3: Σχεδιασμός Κατασκευών από Χάλυβα
ΕΝ 1994 Ευρωκώδικας 4: Σχεδιασμός Σύμμικτων Κατασκευών από Χάλυβα και Σκυρόδεμα
ΕΝ 1995 Ευρωκώδικας 5: Σχεδιασμός Κατασκευών από Ξύλο
ΕΝ 1996 Ευρωκώδικας 6: Σχεδιασμός Κατασκευών από Τοιχοποιία
ΕΝ 1997 Ευρωκώδικας 7: Γεωτεχνικός Σχεδιασμός
ΕΝ 1998 Ευρωκώδικας 8: Αντισεισμικός Σχεδιασμός
ΕΝ 1999 Ευρωκώδικας 9: Σχεδιασμός Κατασκευών από Αλουμίνιο

Κάθε ένα από τα ανωτέρω πρότυπα περιλαμβάνει διάφορα πρότυπα Μέρη, μέσω των οποίων καλύπτονται σχεδόν όλα τα σχετικά αντικείμενα. Έτσι για παράδειγμα, το ΕΝ 1991, στο οποίο γίνεται αναφορά στη συνέχεια, απαρτίζεται από διάφορα Μέρη που αναφέρονται στις επιμέρους δράσεις (μόνιμες και επιβαλλόμενες δράσεις, χιόνι, άνεμος κλπ.). Προκειμένου όμως να γίνει χρήση των παραπάνω προτύπων, τίθεται ως προϋπόθεση η ικανοποίηση των ακόλουθων παραδοχών:

- Η επιλογή του δομικού συστήματος και ο σχεδιασμός του φορέα γίνεται από κατάλληλα καταρτισμένο και έμπειρο προσωπικό.
- Η εκτέλεση πραγματοποιείται από προσωπικό, το οποίο διαθέτει τις κατάλληλες δεξιότητες και εμπειρία.
- Ασκούνται επαρκής επίβλεψη και ποιοτικός έλεγχος κατά τη διάρκεια της εκτέλεσης του έργου και σε όλες τις φάσεις του, δηλαδή στα γραφεία μελετών, στα εργοστάσια, στους χώρους ειδικών επεξεργασιών και στα εργοτάξια.
- Τα κατασκευαστικά υλικά και προϊόντα χρησιμοποιούνται όπως ορίζεται στους εφαρμοζόμενους κανονισμούς ή στις σχετικές προδιαγραφές εκτέλεσης του έργου, ή στις προδιαγραφές αναφοράς των υλικών και των προϊόντων.
- Ο φορέας θα συντηρείται επαρκώς.
- Ο φορέας θα χρησιμοποιηθεί σύμφωνα με τις παραδοχές του σχεδιασμού του.

Οι παραπάνω παραδοχές συμβαδίζουν με το επιδιωκόμενο επίπεδο ικανότητας της κατασκευής σύμφωνα με τα σημερινά δεδομένα, θέτοντας τον κάθε παράγοντα προ των ευθυνών του. Εφ’ όσον λοιπόν εξασφαλίζεται η ισχύς των παραδοχών αυτών, τίθενται πλέον στο μελετητή οι βασικές απαιτήσεις σχεδιασμού, σύμφωνα με τις οποίες:

- Ο φορέας πρέπει να σχεδιάζεται και να κατασκευάζεται με τέτοιο τρόπο, ώστε με κατάλληλο βαθμό αξιοπιστίας και κατά τρόπο οικονομικό, να αντιμετωπίζει όλες τις δράσεις (φορτία) και τις επιδράσεις από το περιβάλλον, οι οποίες είναι πιθανόν να εμφανιστούν κατά την εκτέλεση και τη διάρκεια ζωής του και να παραμένει κατάλληλος για τη χρήση για την οποία προορίζεται σε όλη τη διάρκεια αυτή.
Κεφάλαιο 1: Βασικές αρχές σχεδιασμού

Ο φορέας πρέπει να σχεδιάζεται έτσι ώστε να είναι επαρκής ως προς την:
- αντοχή
- λειτουργικότητα και
- ανθεκτικότητα.

Σε περίπτωση πυρκαγιάς, η αντοχή του φορέα πρέπει να είναι επαρκής για δεδομένο χρονικό διάστημα.

Μέσα στα πλαίσια του σχεδιασμού μιας κατασκευής, θα πρέπει να ορίζεται και η διάρκεια ζωής της, προκειμένου να χρησιμοποιηθεί για τον προσδιορισμό της επιτελεστικότητας (performance), η οποία εξαρτάται από το χρόνο (π.χ. έλεγχοι κόπωσης). Στον Πίνακα 1.1 δίδονται οι διάρκειες ζωής που περιέχονται στο Εθνικό Προσάρτημα του EC1.

Πίνακας 1.1 Ενδεικτική διάρκεια ζωής σχεδιασμού σύμφωνα με το Εθνικό Προσάρτημα του EC1

<table>
<thead>
<tr>
<th>Κατηγορία</th>
<th>Διάρκειας Ζωής Σχεδιασμού</th>
<th>Ενδεικτική διάρκεια ζωής σχεδιασμού (χρόνια)</th>
<th>Παραδείγματα</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>Προσωρινές Κατασκευές (*)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>25</td>
<td>Δομικά στοιχεία τα οποία μπορούν να αντικατασταθούν π.χ. εφέδρανα</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>25</td>
<td>Αγροτικές και παρεμφερείς κατασκευές</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>50</td>
<td>Κτίρια και παρεμφερή</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>100</td>
<td>Μνημειακά κτίρια, γέφυρες και άλλα τεχνικά έργα</td>
<td></td>
</tr>
</tbody>
</table>

(*) Οι φορείς και τα δομικά στοιχεία τα οποία μπορούν να αποσυναρμολογηθούν εν όψει επαναχρησιμοποίησής τους, δεν πρέπει να θεωρούνται προσωρινά.

Ανάλογα με τη χρήση, τη θέση και τη μορφή του έργου, προσδιορίζονται οι δράσεις με βάση τις οποίες ο μελετητής θα προβεί στην ανάλυση του φορέα, για να προσδιορισθούν τα δυσμενέστερα εντατικά και παραμορφωσιακά μεγέθη των μελών του.

Οι δράσεις επί των κατασκευών, προκειμένου να προσδιορισθούν τα αποτελέσματα τους (εντατικά και παραμορφωσιακά μεγέθη), ορίζονται τελικά από ένα Κανονισμό, στον οποίο περιγράφεται τόσο η ποιοτική όσο και η ποσοτική τους διάσταση. Οι αριθμητικές τιμές που δίδονται για τις διάφορες δράσεις, έχουν προκύψει μετά από συστηματικές μετρήσεις ή μακρόβιες μετεωρολογικές παρατηρήσεις και αντιστοιχούν σε μικρή και εκ του προτέρου καθοριζόμενη πιθανότητα υπέρβασής τους, ωστόσο αποτελούνται άλλες χαρακτηριστικές τιμές των δράσεων. Στην πατρίδα μας, ως προς τις δράσεις, όπως και σε πολλές άλλες
Ευρωπαϊκές χώρες, εφαρμόζεται ο Ευρωκώδικας 1, ο οποίος παρέχει για κάθε χώρα λόγω των επιμέρους συνθηκών (κλιματολογικών, εδαφικών κλπ), ιδιαίτερες πληροφορίες (π.χ. για χιόνο, άνεμο κλπ). Οι εξειδικευμένες αυτές πληροφορίες δίνονται είτε μέσω Παραρτημάτων είτε μέσω των Εθνικών Προσαρτημάτων (National Annexes) που συνοδεύουν τους αντίστοιχους Ευρωκώδικες. Τα Εθνικά Προσαρτήματα προσφέρουν εναλλακτικές διαδικασίες, τιμές και συστάσεις, μέσω των οποίων καθορίζονται οι εθνικές επιλογές σε συγκεκριμένα θέματα (π.χ. αριθμητικές τιμές παραμέτρων κλπ).

Οι δράσεις αυτές, για τις οποίες θα γίνει αναφορά σε επόμενες παραγράφους, ανάλογα με τις διακυμάνσεις τους στο χρόνο, κατατάσσονται σε κατηγορίες όπως παρακάτω:

- Μόνιμες δράσεις (G), π.χ. ίδιο βάρος φορέα, σταθερός εξοπλισμός και οδοστρωσία, επιστρώσεις, έμμεσες δράσεις από συστολή ξηρανσής και διαφορικές καθιζήσεις.
- Μεταβλητές δράσεις (Q), π.χ. επιβαλλόμενα φορτία σε πατώματα (ωφέλιμα κλπ), πιέσεις ανέμου, φορτία χιονιού, φορτία από υαλογέφυρες.
- Τυχηματικές δράσεις (Α), π.χ. εκρήξεις, πρόσκρουση οχήματος, πυρκαγιά.

Σημειώνεται ότι οι έμμεσες δράσεις, οι οποίες προκαλούνται από επιβαλλόμενες παραμορφώσεις, μπορούν να είναι είτε μόνιμες είτε μεταβλητές.

Οι δράσεις, οι οποίες προκαλούνται από νερό μπορεί να θεωρηθούν ως μόνιμες και/ή μεταβλητές, ανάλογα με τις διακυμάνσεις του μεγέθους τους με το χρόνο.

Οι δράσεις κατηγοροποιούνται επίσης βάσει:

- της προέλευσής τους, ως άμεσες ή έμμεσες
- της χωρικής τους μεταβολής, ως σταθερές ή ελεύθερες και
- της φύσης τους και/ή της απόκρισης της κατασκευής ως στατικές ή δυναμικές.

Στη συνέχεια περιγράφονται συνοπτικά οι συνήθεις δράσεις επί των κατασκευών, σύμφωνα με τις προβλέψεις του Ευρωκώδικα 1 (EN 1991).

1.1.1 Μόνιμες δράσεις

Με τον όρο αυτό νοούνται όλες οι δράσεις, οι οποίες αναμένεται να επενεργήσουν κατά τη διάρκεια μιας δεδομένης περιόδου αναφοράς και για την οποία η διαφοροποίηση του μεγέθους τους στο χρόνο είναι αμελητέα. Παλαιότερος όρος για τις μόνιμες δράσεις (permanent actions) ήταν «νεκρά φορτία» (dead loads), περιλαμβάνονται δε στην κατηγορία αυτή δράσεων όλα τα κατακόρυφα φορτία που δρουν καθ' όλη τη διάρκεια ζωής της κατασκευής, όπως τα ίδια βάρη (φέροντα στοιχεία, τοίχοι πληρώσεως, ψευδοροφές, επικαλύψεις και επενδύσεις, επιστρώσεις και μονώσεις δαπέδων, ηλεκτρικά και υδραυλικά δίκτυα, κλιματιστικά συστήματα). Με εξαίρεση τα φέροντα στοιχεία, για τα οποία προηγείται μια αρχική εκτίμηση του βάρους τους και πιθανόν επανάληψη της ανάλυσης του φορέα, εφ’ όσον η απόκλιση από τα τελικά φορτία κριθεί σημαντική, οι υπόλοιπες
Κεφάλαιο 1: Βασικές αρχές σχεδιασμού

μόνιμες δράσεις μπορούν να προσδιορίζονται με ικανοποιητική ακρίβεια εξ αρχής. Περιπτώσεις, όπου προβλέπεται μελλοντικώς τροποποίηση των μόνιμων δράσεων (π.χ. προσθήκη ή αφαίρεση τοίχων πληρώσεως, αλλαγή επικαλύψεων ή μονώσεων κλπ) θα πρέπει να συνεκτιμώνται κατά το σχεδιασμό, και να λαμβάνονται υπόψη οι επιπτώσεις επί των εντατικών και παραμορφωσιακών μεγεθών. Τέτοιες περιπτώσεις μπορεί να εντάσσονται στην κατηγορία των σταθερών (fixed) δράσεων, εκτός εάν προβλέπεται συχνή τροποποίηση τους (π.χ. μετακινήσεις διαχωριστικών), οπότε αντιμετωπίζονται ως πρόσθετα επιβαλλόμενα φορτία. Ο Ευρωκώδικας 1, σε ειδικό μέρος του, παρέχει αναλυτικούς πίνακες με τις χαρακτηριστικές τιμές της πυκνότητας μεγάλου αριθμού υλικών. Πληροφορίες μπορούν επίσης να λαμβάνονται από τους κατασκευαστές των διαφόρων προϊόντων ή στοιχείων του έργου (πατώματα, προσόψεις, ανελκυστήρες κλπ).

1.1.2 Επιβαλλόμενες (μεταβλητές) δράσεις

Εντάσσονται γενικώς στην κατηγορία των μεταβλητών ελεύθερων δράσεων (variable-free) εκτός αν ορίζεται κάτι διαφορετικό στον κανονισμό. Περιλαμβάνουν τα κατακόρυφα φορτία που προκύπτουν από τη χρήση του κτιρίου και προέρχονται από την παρουσία ανθρώπων, επίπλων, κινητού εξοπλισμού, οχημάτων, αποθηκευτικών αγαθών κλπ. Λόγω της φύσεως των φορτίων αυτών, δεν είναι επακριβές το βάρος και η θέση τους, γι' αυτό και προσδιορίζονται στατιστικά, οι δε τιμές εφαρμογής τους (χαρακτηριστικές τιμές) δίνονται από τους κανονισμούς.

Οι μεταβλητές δράσεις, θα πρέπει να τοποθετούνται κατά τον πλέον δυσμενή τρόπο στο φορέα, ώστε να καλύπτονται όλες οι ενδεχόμενες φορτικές καταστάσεις (dusmenes for- tisies), και να προσδιορίζεται η dusmenesteferh epirropi touς. Par’ olia auta, epididí h piathánopita taunóchronh fórtisisi olou to φορέα με τις epibalólómenes drásiesi einai schetiká mikhí, ois kanonisimoi probleýoun kápoia posostá apomeiwsis touς σε synke- kriménes periptwóseis. H meiwsis auth epafirómei eidiaká sta upostuhlómatasa póllyro- fón ktiríon, auξanómena me ton arithmó ton oróforon pou uposthirižontai apo éna upo- stulóma. Típikes meiwsies kúmaiwnontai apo 10% éos 30% kai epafirómei mono stis epibalólómenes drásiesi. Den epitrépontai meiwsies stis mónymes drásiesi se synkekri- ménovous típos epibalólómenon drássewn, ópws sthn periptwósi apothekenaktikón chórwn, fórtiwn geranwn, fórtiwn logi μηχανhmatôn, h logi anhρwówon se dihóisia ktría sta opoiá synðhwsa upárxhei kosoμoσirhíh.

Oi epibalólómenes drásies epenergoun wos ioinoi statikês drásises, er’ ólos omws aname- nontai epidrásies sýntronismou (π.χ. apó synhronismh rithmí kínnh anhρwówon h apo χóro h álma) h esagwogh símmantikís eipitákhunhsh fórtisea, sti prósomíma fórtisís própe nea prorblépetai dunamekí antimeitopía.

Σε καταστάσεις σχεδιασμού, όπου τα epibalólómena fórtia droun taunóchrona me álles metablibetés drásies (π.χ. ánemos, χόρον klp), to sínulo ton epibalólómenon fórtiwn pou lambránontai upópsi sti synkekriména períptwosi fórtisís, θa theoreitei ws mia evnía
δράση. Σε στέγες, τα επιβαλλόμενα φορτία δεν εφαρμόζονται ταυτόχρονα με τα φορτία χιονιού ή ανέμου.

Οι χώροι σε κατοικίες και σε δημόσια, εμπορικά και διοικητικά κτίρια διακρίνονται σε κατηγορίες ανάλογα με τη χρήση τους, σύμφωνα με τον Πίνακα 1.2.

Πίνακας 1.2 Κατηγορίες χρήσης

<table>
<thead>
<tr>
<th>Κατηγορία</th>
<th>Συγκεκριμένη χρήση</th>
<th>Παράδειγμα</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Χώροι για οικιακές δραστηριότητες</td>
<td>Δωμάτια σε κτίρια κατοικίων και στις θάλαμο και πτέρυγες σε νοσοκομεία. Υπνοδωμάτια σε ξενοδοχεία και ξενώνες, κουζίνες και τουαλέτες.</td>
</tr>
<tr>
<td>C</td>
<td>Χώροι στους οποίους οι ανθρώποι μπορεί να συναθροίστονται (με εξαίρεση των χώρων που κατατάσσονται στις κατηγορίες A, B, και D)</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Χώροι με εμπορικά καταστήματα</td>
<td>D1: Χώροι σε καταστήματα λιανικής πώλησης, γενικά. D2: Χώροι σε πολυκαταστήματα</td>
</tr>
</tbody>
</table>
Κεφάλαιο 1: Βασικές αρχές σχεδιασμού

Τα επιβαλλόμενα φορτία ανά κατηγορία χρήσης φαίνονται στον Πίνακα 1.3, όπως προτείνεται στο Εθνικό Προσάρτημα του EN1991-1-1, στο οποίο περιγράφονται και οι υπόλοιπες κατηγορίες χρήσης (Ε έως Η).

Πίνακας 1.3 Επιβαλλόμενα φορτία σε δάπεδα, εξώστες και σκάλες κτιρίων, σύμφωνα με το Εθνικό Προσάρτημα του EN1991

<table>
<thead>
<tr>
<th>Κατηγορίες φορτιζομένων επιφανειών</th>
<th>q_k [kN/m²]</th>
<th>Q_k [kN]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Κατηγορία Α και Κατηγορία Β</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Δάπεδα</td>
<td>2,0</td>
<td>2,0</td>
</tr>
<tr>
<td>Σκάλες</td>
<td>3,5</td>
<td>2,0</td>
</tr>
<tr>
<td>Εξώστες</td>
<td>5,0</td>
<td>3,0</td>
</tr>
<tr>
<td>Κατηγορία C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>3,0</td>
<td>3,0</td>
</tr>
<tr>
<td>C2</td>
<td>5,0</td>
<td>4,0</td>
</tr>
<tr>
<td>C3</td>
<td>5,0</td>
<td>4,0</td>
</tr>
<tr>
<td>C4</td>
<td>5,0</td>
<td>4,0</td>
</tr>
<tr>
<td>C5</td>
<td>7,5</td>
<td>4,5</td>
</tr>
<tr>
<td>Κατηγορία D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>5,0</td>
<td>4,0</td>
</tr>
<tr>
<td>D2</td>
<td>5,0</td>
<td>4,0</td>
</tr>
</tbody>
</table>

Το συγκεντρωμένο φορτίο Q_k πρέπει να λαμβάνεται υπόψη θεωρούμενο ότι δρα μόνο του σε οποιοδήποτε σημείο του χώρου (δάπεδο, μπαλκόνι, σκάλες κλπ), για τοπικούς ελέγχους.

Υπενθυμίζεται εδώ η δυνατότητα απομείωσης των τιμών των επιβαλλόμενων φορτίων q_k που περιέχονται στον Πίνακα 1.3, καθώς και των συνολικών επιβαλλόμενων φορτίων σε υποστυλώματα και τοίχους, που προέρχονται από διάφορους ορόφους (EN1991-1-1, Παρ. 6.3.1.2). Περισσότερες πληροφορίες για τις τιμές των επιβαλλόμενων δράσεων σε άλλες περιπτώσεις (π.χ. αποθηκευτικοί χώροι, χώροι οδικής κυκλοφορίας και στάθμευσης σε κτίρια, στέγες κλπ) περιέχονται στο EN1991-1-1 και στο αντίστοιχο Εθνικό Προσάρτημα.

1.1.3 Φορτίο χιονιού

Τα φορτία λόγω χιονιού αντιμετωπίζονται παράδοσιακά, ορίζοντας μία συγκεκριμένη απλή τιμή φορτίου, με πιθανές μειώσεις για απότομες κλίσεις στεγών. Η προσέγγιση αυτή δεν λαμβάνει υπόψη περιπτώσεις όπως αυξανόμενη χιονόπτωση σε μεγαλύτερα υψόμετρα ή τοπικά υψηλότερα φορτία λόγω κίνησης της μάζας του χιονιού, γεγονός που μπορεί να προκαλέσει πλήρη ή μερική κατάρρευση. Μία καλύτερη προσέγγιση είναι η
χρησιμοποίηση κατάλληλου χάρτη, που δίνει τις βασικές εντάσεις των φορτίων χιονιού για ένα συγκεκριμένο υψόμετρο και περίοδο αναφοράς, ενώ μπορεί να εφαρμοστούν εν συνεχεία διορθώσεις για διαφορετικά υψόμετρα ή διάρκεια ζωής σχεδιασμού. Η επιρροή της μορφής της στέγης λαμβάνεται υπόψη με τη χρήση συντελεστών μορφής. Καλύπτονται επίσης ειδικότερες καταστάσεις όπως συσσωρεύσεις χιονιού πίσω από στήθα, σε κουλάδες και σε απότομες αλλαγές της στέγης.

Το φορτίο χιονιού κατατάσσεται στις μεταβλητές σταθερές δράσεις. Προκαλείται από την εναπόθεση του χιονιού σε οριζόντιες ή κεκλιμένες στέγες και είναι ιδιαίτερα σημαντικό για περιοχές όπου επικρατεί κρύος καιρός και είναι συνήθεις μεγάλες χιονοπτώσεις. Η ποσότητα του χιονιού που εναποτίθεται σε μία στέγη εξαρτάται από την κλίση της στέγης και την τοποθεσία (υψόμετρο, προσανατολισμός κλπ) του έργου, ενώ η πυκνότητα του μέσα της οποίας προσδιορίζεται το αντίστοιχο φορτίο λόγω χιονιού δεν είναι σταθερή και εξαρτάται από το βαθμό συμπύκνωσης της στέγης. Εις θέσεις πέραν της χιονόπτωσης σε συνθήκες ηρεμίας, μπορεί να είναι αναγκαίο να θεωρηθούν οι επιδράσεις του ανέμου, ο οποίος είναι δυνατόν να προκαλέσει ανακατανομή του χιονιού και σε μερικές περιπτώσεις τη μερική του απομάκρυνση από τη στέγη. Επιπλέον, πρέπει να ληφθούν υπόψη οποιεσδήποτε αλλαγές στην κατανομή του χιονιού στις στέγες λόγω διαφυγής θερμότητας από το κτίριο, μέσω κάποιου τμήματος της στέγης ή εργασίες απομάκρυνσης χιονιού, εάν οι μορφές αυτής της φόρτισης είναι κρίσιμες. Οι κανονισμοί παρέχουν γενικές πληροφορίες σχετικά με τις παραμέτρους αυτές, τεκμηριωμένες μέσω μακροχρόνιων επι τόπου μετρήσεων και κατάλληλης στατιστικής επεξεργασίας.

Για τις χώρες της Ευρωπαϊκής Ένωσης, οι τιμές του s_k για περίοδο επαναφοράς 50 ετών δίνονται στο Παράρτημα C του ΕΝ 1991 - Μέρος 1-3. Για την Ελλάδα, σύμφωνα με το Εθνικό Προσάρτημα, ορίζονται οι παρακάτω τρεις ζώνες, με τις αντίστοιχες χαρακτηριστικές τιμές k_s των φορτίων για έδαφος που βρίσκεται στη στάθμη της θάλασσας.

Ζώνη Ι (2004 kN/m²): Νομοί Αρκαδίας, Ηλείας, Λακωνίας, Μεσσηνίας και όλα τα νησιά πλην των Σποράδων και της Εύβοιας.

Ζώνη ΙΙ (2008 kN/m²): Υπόλοιπη χώρα.

Ζώνη ΙΙΙ (2017 kN/m²): Νομοί Μαγνησίας, Φθιώτιδας, Καρδίτσας, Τρικάλων, Λάρισας, Σποράδες και Εύβοια.

Για τοποθεσίες με υψόμετρο μεγαλύτερο από 1500 m πρέπει να γίνεται ειδική μελέτη και αξιολόγηση. Περισσότερες πληροφορίες για ειδικές περιπτώσεις περιέχονται στο Εθνικό Προσάρτημα.

Η χαρακτηριστική τιμή s_k του φορτίου χιονιού επί του εδάφους είναι συναρτική της $s_{k,0}$ των φορτίων για έδαφος που βρίσκεται στη στάθμη της θάλασσας, και δίνεται από τη σχέση:

$$s_k = s_{k,0} \left(1 + \left(\frac{A}{9.17}\right)^2\right)$$ (1.1)
Κεφάλαιο 1: Βασικές αρχές σχεδιασμού

όπου

\[s_{k,0} \] είναι η χαρακτηριστική τιμή του φορτίου χιονιού στη στάθμη της θάλασσας (δηλ. για \(A = 0 \)), σε \(\text{kN/m}^2 \)

Α είναι το υψόμετρο της συγκεκριμένης τοποθεσίας από τη στάθμη της θάλασσας, σε \(\text{m} \).

ΣΗΜΕΙΩΣΗ

Είναι σκόπιμο, οι τιμές αυτές, οι οποίες είναι οι ελάχιστες που πρέπει να ληφθούν υπόψη κατά το σχεδιασμό, να επαληθεύονται από το μελετητή με ερώτηση στις επιτόπου αρμόδιες αρχές (δημόσιες υπηρεσίες μετεωρολογική υπηρεσία αστυνόμεια κλπ), προκειμένου να ληφθούν υπόψη πιθανές τοπικές ιδιαιτερότητες, και να γίνει η ανάλογη αύξησή τους, ώστε να αντιστοιχούν κατά το δυνατόν στις πραγματικές.

Το φορτίο χιονιού \(s \) που ασκείται επί της στέγης, θεωρείται ότι ενεργεί κατακόρυφα, αναφέρεται στην οριζόντια προβολή της στέγης, προσδιορίζεται δε από τις σχέσεις:

α) Για καταστάσεις διαρκείας ή παροδικές:

\[s = \mu_i \ C_e \ C_t \ s_k \] (1.2)

β) Για τυχηματικές καταστάσεις:

\[s = \mu_i \ C_e \ C_t \ s_{Ad} \] (1.3)

όπου:

\(\mu_i \) συντελεστής μορφής φορτίου χιονιού, υπολογιζόμενος κατά περίπτωση

\(s_k \) η χαρακτηριστική τιμή του φορτίου χιονιού επί του εδάφους

\(C_e \) συντελεστής έκθεσης, ο οποίος για κανονικές συνθήκες λαμβάνεται ίσος με 1. Συνιστώμενες τιμές για άλλες συνθήκες είναι:

– Για έκθεση σε ισχυρούς ανέμους \(C_e = 0,8 \).

– Για κατασκευές προστατευόμενες (από κτίρια ή δέντρα) \(C_e = 1,2 \).

\(C_t \) θερμικός συντελεστής, ο οποίος είναι συνήθως ίσος με 1 για κανονικές συνθήκες θερμικής μόνωσης της στέγης. Μπορεί να επιτρέπονται μικρότερες τιμές, προκειμένου να ληφθεί υπόψη η επιρροή της απώλειας θερμότητας μέσω της στέγης.

\[s_{Ad} = C_{esl} \cdot s_k \] τιμή σχεδιασμού του φορτίου χιονιού επί του εδάφους για την τυχηματική κατάσταση.

\(C_{esl} = 2 \) συντελεστής για εξαιρετικά φορτία χιονιού.

Στο ευρωπαϊκό πρότυπο EN 1991-1-3 (Γενικές δράσεις – Φορτία χιονιού) περιέχονται λεπτομερώς οι μορφές φόρτισης που πρέπει να ληφθούν υπόψη κατά την ανάλυση ανάλογα με τον τρόπο εναπόθεσης του χιονιού πάνω στη στέγη (οριζόντια, κεκλιμένη, θολωτή κλπ). Προβλέπονται επίσης ειδικές περιπτώσεις φόρτισης σε έκτακτες καταστάσεις μεγάλης συγκέντρωσης χιονιού επί της στέγης (π.χ. σε επαναλαμβανόμενες στέγες, κα-
θώς και περιπτώσεις γειτονικών κτιρίων με διαφορετικό ύψος, όπου μπορεί να πραγμα-
tοποιηθεί υπερφόρτωση της χαμηλότερης στέγης, λόγω κατολίσθησης χιονιού από την
υψηλότερη ή λόγω της φοράς του ανέμου).

1.1.4 Δράσεις ανέμου

Οι δράσεις λόγω ανέμου στις κατασκευές από χάλυβα, παίζουν ιδιαίτερα σημαντικό ρόλο και
και αποτελούν σε πολλές περιπτώσεις τη βασική φόρτιση, ανεξάρτητα από τον τύπο τους
(μονώροφα, πολυώροφα κλπ). Το μέγεθος των δράσεων αυτών μεταβάλλεται ανάλογα με
την τοποθεσία, το ύψος της κατασκευής, το είδος του περιβάλλοντος χώρου κλπ.

Οι δυνάμεις λόγω ανέμου είναι χρονικά μεταβλητές και μπορεί να προκαλέσουν τα-
lαντώσεις, για πολλές όμως κατασκευές (π.χ. σε δύσκαμπτες) η δυναμική αυτή επίδραση
είναι μικρή, οπότε τα φορτία του ανέμου μπορεί να θεωρούνται ως στατικά. Σε εύκα-
mπτες κατασκευές η δυναμική επίδραση μπορεί να είναι σημαντικής, οπότε πρέπει να
λαμβάνεται υπόψη η δυναμική τους συμπεριφορά.

Η πλέον σημαντική παράμετρος για τον προσδιορισμό των δράσεων ανέμου είναι η ταχύ-
τητα του ανέμου. Η βάση σχεδιασμού είναι η μέγιστη ταχύτητα (ριπή) που προβλέπεται
για τη διάρκεια ζωής σχεδιασμού της κατασκευής.

Οι παράγοντες που επηρεάζουν το μέγεθος της ταχύτητας και της ασκούμενης πίεσης,
είναι:

- Η γεωγραφική θέση. Οι ταχύτητες του ανέμου είναι στατιστικώς μεγαλύτερες σε
 ορισμένες περιοχές απ’ ότι σε άλλες. Για πολλές περιοχές υπάρχουν διαθέσιμα ση-
 μαντικά στατιστικά στοιχεία και οι ραχούλες των ταχύτητων του ανέμου δημιουργούνται
 συνήθως με τη μορφή ισούχων καμπυλών, οι οποίες είναι γραμμές ισόταχης ταχύτητας
tου ανέμου σε ένα χάρτη. Η βασική ταχύτητα του ανέ-
 μου αναφέρεται στον Ευρωκώδικα 1 και ως η ταχύτητα αναφοράς του ανέμου και
 αντιστοιχεί στη μέση ταχύτητα στα 10 m πάνω από το επίπεδο γης, λαμβάνοντας το μέσο όρο για
 μία περίοδο 10 λεπτών και με περίοδο επαναφοράς
 50 ετών.

- Η φυσική θέση. Οι ρυπές του ανέμου με υψηλές ταχύτητες απαντώνται σε εκτεθη-
 μένες περιοχές όπου είναι οι ακτές, παρά σε πιο προστατευμένες περιοχές όπου είναι
 τα κέντρα πόλεων, λόγω των μεταβολών στην τραχύτητα των επιφανειών, που συνε-
 πάγεται μειώσεις της ταχύτητας του ανέμου στο επίπεδο του εδάφους. Η μεταβολή αυτή
 υπάρχει μέσω ενός συντελεστή τραχύτητας, ο οποίος σχετίζεται με
 την τραχύτητα του εδάφους και το ύψος
 50 ετών.

- Η τοπογραφία. Τα ιδιαίτερα χαρακτηριστικά της τοποθεσίας σε σχέση με τους λό-
 φους και τους γκρεμούς λαμβάνονται υπόψη με ένα συντελεστή τοπογραφία.

- Οι διαστάσεις των κτιρίων. Το ύψος του κτιρίου είναι ιδιαίτερα σημαντικό, επειδή
 οι ταχύτητες του ανέμου αυξάνουν με το ύψος πάνω από το επίπεδο του εδάφους.
Κεφάλαιο 1: Βασικές αρχές σχεδιασμού

Η μέση ταχύτητα του ανέμου προσδιορίζεται από τη βασική του ταχύτητα, που προσαυξάνεται για να ληφθεί υπόψη το ύψος του κτιρίου, η τραχύτητα του εδάφους και η τοπογραφία. Η πίεση του ανέμου είναι ανάλογη προς το τετράγωνο της μέσης ταχύτητάς του.

Το σχήμα της κατασκευής. Τα φορτία του ανέμου δεν είναι απλώς μία μετωπική πίεση, που εξασκείται στην πρόσοψη μίας κατασκευής, αλλά το αποτέλεσμα μίας σύνθετης κατανομής πιέσεων σε όλες τις όψεις της, λόγω της κίνησης του ανέμου γύρω από όλη την κατασκευή. Γενικά αναπτύσσονται θετικές και αρνητικές πιέσεις στις διάφορες όψεις της κατασκευής αντίστοιχα προς τα αεροδυναμικά φαινόμενα που παρατηρούνται όταν ένα εμπόδιο (κτίριο) παρεμβάλλεται σε μία υπάρχουσα ροή (άνεμο). Η κατανομή είναι επιπλέον περίπλοκη λόγω των γειτονικών κατασκευών και των υφιστάμενων εμποδίων/μεταβολών, όπως λόφοι, κοιλάδες, δασικές εκτάσεις, που μπορεί να επηρεάζουν τη μορφή της κίνησης του ανέμου και τη σχετική κατανομή της πίεσης. Γενικά, ως προς τις παρακάτω φαινόμενα της κατασκευής, πιέσεις αναπτύσσονται στις προσήνεμες και υποπιέσεις στις υπήνεμες όψεις.

Η κλίση της στέγης. Η παράμετρος αυτή είναι σημαντική ως προς το είδος των πιέσεων που αναπτύσσονται επί της κατασκευής. Είναι αξιοσημείωτο το γεγονός ότι στέγες με μικρές κλίσεις μπορεί να υπόκεινται σε υφαρπαγή ή αναρρόφηση (αρνητικές πιέσεις ή υποπιέσεις), ενώ στέγες με μεγαλύτερη κλίση εξασθενίζονται στις πιέσεις προς τα κάτω.

Η διεύθυνση του ανέμου. Οι κατανομές της πίεσης μεταβάλλονται για διαφορετικές διευθύνσεις του ανέμου.

Στις προδιαγραφές, πινακοποιημένες διαδικασίες επιτρέπουν να ληφθούν υπόψη οι παραπάνω παράμετροι κατά πρώτο λόγο στον υπολογισμό της ταχύτητας σχεδιασμού του ανέμου, και κατά δεύτερο λόγο στη μετατροπή της ταχύτητας του ανέμου σε σύστημα δυνάμεων επί της κατασκευής. Οι ισοδύναμες στατικές δυνάμεις μπορεί στη συνέχεια να χρησιμοποιηθούν στην ανάλυση και στο σχεδιασμό της αντοχής της κατασκευής, ως σύνολο. Ωστόσο, πρέπει να ληφθούν επίσης υπόψη και συγκεκριμένα επιπρόσθετα χαρακτηριστικά του ανέμου, όπως:

Τοπικές πιέσεις, ιδιαίτερα σε γωνίες και γύρω από εμπόδια σε μία κατά τα άλλα «λεία» εξωτερική επιφάνεια, μπορεί να είναι σημαντικά υψηλότερες από το γενικό επίπεδο των πιέσεων. Οι υψηλές τοπικές πιέσεις επηρεάζουν τα μικρά τμήματα ενός κτιρίου, όπως στοιχεία επικαλύψεων και λεπτομέρειες στηριγμάτων, που πρέπει να σχεδιαστούν για ισοδύναμες πιέσεις ανέμου απ’ ότι ολόκληρη η κατασκευή.

Προκλήσεις των κατασκευών που είναι ευαίσθητες στον άνεμο πρέπει να αντιμετωπίζονται με ένα πιο σύνθετο τρόπο. Μπορεί να γίνουν δοκιμές σε αεροδυναμική σήραγγα με προσομοιώσεις των γειτονικών κτιρίων. Μεταξύ των κατασκευών που μπορεί να χρειάζεται να αντιμετωπιστούν με αυτό τον τρόπο, είναι και τα υψηλά κτίρια, στέγες σταδίων μεγάλου μήκους ή εύκαμπτες γέφυρες, ιστοί και πύργοι.
Στο Ευρωπαϊκό Πρότυπο EN1991-1-4 (Δράσεις ανέμου), προκειμένου να απλοποιηθεί η διαδικασία εισαγωγής των δράσεων λόγω ανέμου στις κατασκευές, λαμβάνοντας υπόψη τους προαναφερθέντες παράγοντες, οι δράσεις ανάγονται σε δυνάμεις ή πιέσεις (κάθετες ή εφαπτομενικές) επί των εξωτερικών ή και εσωτερικών επιφανειών και μάλιστα με ομοιόμορφη κατανομή σε όλη την επιφάνεια μιας όψης ή σε τμήμα της.

Έτσι, η πίεση του ανέμου η οποία δρα καθέτως προς τις εξωτερικές ή τις εσωτερικές επιφάνειες μιας κατασκευής, προκύπτει από τις σχέσεις:

\[w_e = q_p(z_e) \cdot c_{pe} \] \hspace{1cm} (1.4)

\[w_i = q_p(z_i) \cdot c_{pi} \] \hspace{1cm} (1.5)

όπου

\[q_p(z_e), \; q_p(z_i) \] η πίεση ταχύτητας αιχμής

\[z_e, \; z_i \] το ύψος αναφοράς για την εξωτερική ή την εσωτερική πίεση

\[c_{pe}, \; c_{pi} \] ο συντελεστής εξωτερικής ή εσωτερικής πίεσης.

Η πίεση ταχύτητας αιχμής σε ύψος \(z \), προσδιορίζεται από τη σχέση:

\[q_p(z) = [1 + 7 \cdot I_v(z)] \cdot \frac{1}{2} \cdot \rho \cdot v_m^2(z) = c_e(z) \cdot q_b \] \hspace{1cm} (1.6)

όπου:

\[\rho \] η πυκνότητα του αέρα, εξαρτώμενη από το υψόμετρο, τη θερμοκρασία και τη βαρομετρική πίεση που αναμένονται σε μια περιοχή κατά τη διάρκεια ανεμοθύελλας (προτεινόμενη τιμή \(\rho = 1,25 \text{ kg/m}^3 \))

\[I_v(z) \] η ένταση του στροβιλισμού σε ύψος \(z \)

\[c_e(z) \] ο συντελεστής έκθεσης και δίνεται από τη σχέση:

\[c_e(z) = \frac{q_p(z)}{q_b} \] \hspace{1cm} (1.7)

\[q_b \] η βασική πίεση, ίση προς:

\[q_b = \frac{1}{2} \cdot \rho \cdot v_b^2 \] \hspace{1cm} (1.8)

όπου η βασική ταχύτητα ανέμου \(v_b \), ορίζεται ως συνάρτηση της διεύθυνσης του ανέμου και της εποχής του έτους, στα 10 m πάνω από έδαφος κατηγορίας II, και είναι ίση με:

\[v_b = c_{dir} \cdot c_{season} \cdot v_{b,0} \] \hspace{1cm} (1.9)

Στη σχέση αυτή είναι:

\[c_{dir} \] ο συντελεστής διεύθυνσης (προτεινόμενη τιμή 1,0)
Κεφάλαιο 1: Βασικές αρχές σχεδιασμού

\[c_{\text{season}} \quad \text{o συντελεστής εποχής (προτεινόμενη τιμή 1,0)} \]

\[v_{b,0} \quad \text{η θεμελιώδης τιμή της βασικής ταχύτητας του ανέμου, ίση με τη χαρακτηριστική μέση ταχύτητα του ανέμου 10 λεπτών, ανεξάρτητη από τη διεύθυνσή του και την εποχή του έτους, στα 10 m πάνω από το έδαφος, σε ανοικτή περιοχή με χαμηλή βλάστηση, όπως γρασίδι και με μεμονωμένα εμπόδια ανά αποστάσεις μεταξύ τους τουλάχιστον 20 φορές το ύψος των εμποδίων (έδαφος κατηγορίας II). Η θεμελιώδης τιμή της βασικής ταχύτητας του ανέμου σύμφωνα με το αντίστοιχο Εθνικό Προσάρτημα ορίζεται σε 33 m/s για τα νησιά και παράλια μέχρι 10 km από την ακτή και σε 27 m/s για την υπόλοιπη χώρα.}\\

Η μέση ταχύτητα του ανέμου \(v_{m}(z) \), σε ύψος \(z \) πάνω από το έδαφος, εξαρτάται από την τραχύτητα του εδάφους και την τοπογραφική διαμόρφωση, προσδιορίζεται δε από τη σχέση:

\[v_{m}(z) = c_{r}(z) \cdot c_{0}(z) \cdot v_{b} \]

όπου:

\[c_{r}(z) \] είναι ο συντελεστής τραχύτητας

\[c_{0}(z) \] είναι ο συντελεστής τοπογραφικής διαμόρφωσης (προτεινόμενη τιμή 1,0).

Περισσότερες λεπτομέρειες για τις δράσεις του ανέμου περιέχονται στις βιβλιογραφικές αναφορές [8, 16].

Η κατανομή των πιέσεων σε ένα κτίριο εξαρτάται κυρίως από τη μορφή του. Στο EN 1991-1-4 περιέχονται οι κατανομές πιέσεων σε κτίρια διάφορων μορφών, ως αποτέλεσμα πειραμάτων και επιτόπου μετρήσεων επί πραγματικών κατασκευών. Περιέχεται επίσης όλη η διαδικασία για τον προσδιορισμό της συνεισφοράς των διαφόρων παραμέτρων (δυναμικός συντελεστής, συντελεστές τοπογραφίας και τραχύτητας κλπ). Ο μεγάλος αριθμός σελίδων του προτύπου αυτού εμμέσως αποδεικνύει την πολυπλοκότητα προσδιορισμού των δράσεων ανέμου και την προσπάθεια που κατεβλήθη για την απλοποίησή τους, ώστε να είναι εφικτή η εφαρμογή τους στην πράξη. Η όλη διαδικασία προβλέπει στατική αντιμετώπιση των δράσεων αυτών, σε ειδικές όμως περιπτώσεις (π.χ. μεγάλα στέγαστρα, γέφυρες μεγάλου ανοίγματος κλπ), θα πρέπει να γίνεται και δυναμική ανάλυση. Επιπλέον, σε περιπτώσεις μη συμβατικών κτιρίων, πρέπει να γίνεται και έλεγχος της κατασκευής σε σήραγγα αέρα, προκειμένου να διαπιστωθεί η ορθή κατανομή των πιέσεων επί των διαφόρων επιφανειών της. Είναι προφανές ότι η ανάλυση που θα ακολουθήσει, πρέπει να θεωρεί ότι ο άνεμος μπορεί να έχει οποιαδήποτε διεύθυνση σε σχέση με το κτίριο. Διαφορετικές κατανομές πιέσεων προκύπτουν όταν η όψη ενός κτιρίου είναι κατά σημαντικό μέρος της ανοικτή, οπότε οι αρνητικές πιέσεις γίνονται ακόμη μεγαλύτερες επί της οροφής αλλά και άλλων κατακορύφων επιφανειών του κτιρίου. Εάν η όψη μπορεί να είναι άλλες φορές ανοικτή και άλλες κλειστή, θα πρέπει να μελετώνται χωριστά και οι δύο περιπτώσεις.
1.1.5 Σεισμικές δράσεις

Κατά τη διάρκεια ενός σεισμού αναπτύσσονται στο έδαφος επιταχύνσεις (οριζόντιες και κατακόρυφες), που έχουν ως συνέπεια τη δημιουργία αδρανειακών δυνάμεων επί των κατασκευών. Από τις δυνάμεις αυτές, οι οριζόντιες θεωρούνται οι πλέον σοβαρές, χωρίς αυτό να σημαίνει, ότι και οι κατακόρυφες δεν μπορεί να αποβούν καταστροφικές υπό ορισμένες συνθήκες.

Η χώρα μας βρίσκεται σε μία εξαιρετικά σεισμογενή περιοχή και ως εκ τούτου οι σεισμικές δράσεις παίζουν σημαντικό ρόλο στο σχεδιασμό των κατασκευών. Ο ΕΑΚ 2000 (Ελληνικός Αντισεισμικός Κανονισμός) ως νόμος του κράτους, καλύπτει τα λεγόμενα έργα «κανονικού κινδύνου» (δηλ. έργα των οποίων η ενδεχόμενη βλάβη περιορίζεται στο ίδιο το έργο, στο περιεχόμενό του και στην άμεση γειτονία του) και περιέχει τις βασικές απαιτήσεις, τα κριτήρια σχεδιασμού, το μέγεθος των σεισμικών δράσεων και τους κανόνες συνδυασμού με άλλες δράσεις, καθώς και κανόνες εφαρμογής για κτιριακά κυρίως έργα. Από την άλλη θεωρία, το Ευρωπαϊκό Πρότυπο EN1998 με τα διάφορα Μέρη του, βρίσκεται σε εξέλιξη και όταν ολοκληρωθεί και συμπληρωθεί από τα αντίστοιχα Εθνικά Πρόσαρτήματα, θα αντικαταστήσει μετά παρέλευση ευλόγου διαστήματος τον ΕΑΚ2000.

Ως σεισμικές δράσεις σχεδιασμού θεωρούνται οι ταλαντώσεις του κτιρίου λόγω του σεισμού, οι οποίες ονομάζονται και σεισμικές διεγέρσεις ή σεισμικές δονήσεις. Οι σεισμικές δράσεις κατατάσσονται στις τυχηματικές και δεν συνδυάζονται με άλλες τυχηματικές δράσεις, όπως επίσης δεν συνδυάζονται με τις δράσεις λόγω ανέμου.

Η ένταση των εδαφικών σεισμικών διεγέρσεων, καθορίζεται συμβατικά με μία μόνη παράμετρο, τη μέγιστη εδαφική επιτάχυνση σχεδιασμού Α, ανάλογα με τη ζώνη σεισμικής επικινδυνότητας της χώρας στην οποία βρίσκεται το έργο. Η Ελλάδα, υποδιαιρείται σε τρεις Ζώνες Σεισμικής Επικινδυνότητας (Ι έως ΙΙΙ), τα οποία καθορίζονται στο Χάρτη Σεισμικής Επικινδυνότητας (βλέπε ΕΑΚ 2000 και ΦΕΚ 1154/12-8-03, Σχήμα 2.2 και Πίνακα 2.1). Σε κάθε Ζώνη αντιστοιχεί μια τιμή σεισμικής επιτάχυνσης Α, η οποία, σύμφωνα με τα σεισμολογικά δεδομένα, έχει πιθανότητα υπέρβασης 10% στα 50 χρόνια, (ή περίοδο επαναφοράς 475 χρόνια), με βάση τη σχέση:

\[A = a \cdot g \]

όπου \(g \) είναι η επιτάχυνση της βαρύτητας και

\[a = 0,16 \] για Ζώνη Ι
\[a = 0,24 \] για Ζώνη ΙΙ
\[a = 0,36 \] για Ζώνη ΙΙΙ

Η εδαφική επιτάχυνση Α κλιμακώνεται περαιτέρω μέσα στην ιδιαίτερα ανάλογα με την κατηγορία σπουδαιότητας των έργων, μέσω του συντελεστή σπουδαιότητας \(\gamma_{s} \), κυμαινόμενου μεταξύ 0,85 και 1,30, ο οποίος εκφράζει μικρότερες ή μεγαλύτερες απαιτήσεις απόκρισης.
Κεφάλαιο 1: Βασικές αρχές σχεδιασμού

Οι σεισμικές διεγέρσεις σχεδιασμού ορίζονται στην ελεύθερη επιφάνεια του εδάφους ως δύο οριζόντιες (κάθετες μεταξύ τους) και μία κατακόρυφη συνιστώσα, στατιστικά ανεξάρτητες μεταξύ τους, καθορίζονται δε με τη βοήθεια φασμάτων απόκρισης (σε όρους επιτάχυνσης) ενός μονοβάθμιου ταλαντωτή.

Για τον προσδιορισμό της σεισμικής απόκρισης της κατασκευής προβλέπεται από τον ΕΑΚ 2000 (ανάλογα και από το ΕΝ 1998) η εφαρμογή των παρακάτω δύο μεθόδων:

- Δυναμική φασματική μέθοδος (πλήρης ιδιομορφική ανάλυση του συστήματος, υπολογισμός μέγιστης σεισμικής απόκρισης για κάθε ιδιομορφή ταλάντωσης και τέλος τετραγωνική επαλληλία των μέγιστων ιδιομορφικών αποκρίσεων).

- Απλοποιημένη φασματική ή ισοδύναμη στατική μέθοδος (δεν απαιτείται ιδιομορφική ανάλυση, αλλά στηρίζεται σε προσεγγιστική θεώρηση μόνον της θεμελιώδους ιδιομορφής ταλάντωσης).

Για την ισοδύναμη γραμμική ανάλυση των κατασκευών στη μετελαστική περιοχή συμπεριφοράς της χρησιμοποιούνται τα φάσματα σχεδιασμού των οριζόντιων συνιστώσων σεισμού του Σχήματος 1.2, τα οποία προκύπτουν με τροποποίηση των ελαστικών φασμάτων

α) μέσω εισαγωγής του όρου 2/3 ως εκθέτη στον κατιόντα κλάδο, και

β) με εφαρμογή του δείκτη συμπεριφοράς q, όπως αναλύεται στη συνέχεια.

Σχήμα 1.1 Φάσμα Σχεδιασμού $\phi_d(T)$, για $\frac{\eta \cdot \theta \cdot \beta_0}{q} = 2.5$

Το φάσμα της κατακόρυφης συνιστώσας προκύπτει από το φάσμα των οριζόντιων συνιστώσων, με πολλαπλασιασμό των τεταγμένων του επί 0,70.

Τα φάσματα του Σχ. 1.1 καθορίζονται από τις ακόλουθες εξισώσεις:
Περιοχή Περιόδων Εξίσωση

\[0 \leq T < T_1 : \quad \Phi_d(T) = \gamma_1 \cdot A \left[1 + \frac{T}{T_1} \left(\frac{\eta \cdot \theta \cdot \beta_0}{q} - 1 \right) \right] \]
(1.12α)

\[T_1 \leq T \leq T_2 : \quad \Phi_d(T) = \gamma_1 \cdot A \cdot \frac{\eta \cdot \theta \cdot \beta_0}{q} \]
(1.12β)

\[T_2 < T \quad \Phi_d(T) = \gamma_1 \cdot A \cdot \frac{\eta \cdot \theta \cdot \beta_0}{q} \cdot \left(\frac{T_2}{T} \right)^{2/3} \]
(1.12γ)

όπου:

\[A = a \cdot g \] μέγιστη οριζόντια σεισμική επιτάχυνση του εδάφους

\[g \] επιτάχυνση της βαρύτητας

\[\gamma_1 \] συντελεστής σπουδαιότητας του κτιρίου

\[q \] συντελεστής συμπεριφοράς της κατασκευής

\[\eta \] διορθωτικός συντελεστής για ποσοστό απόσβεσης ≠ 5%

\[\theta \] συντελεστής επιρροής της θεμελίωσης

\[T_1 \] και \[T_2 \] χαρακτηριστικές περίοδοι του φάσματος (Πίνακας 1.4)

\[\beta_0 = 2,5 \] συντελεστής φασματικής ενίσχυσης, και

\[\Lambda, \, \Gamma, \, \Delta \] κατηγορία εδάφους.

Πρέπει σε κάθε περίπτωση να ισχύει:

\[\frac{\Phi_d(T)}{A \cdot \gamma_1} \geq 0,25 \]
(1.13)

Πίνακας 1.4: Τιμές χαρακτηριστικών Περιόδων Τ₁, Τ₂ (sec)

<table>
<thead>
<tr>
<th>Κατηγορία εδάφους</th>
<th>Α</th>
<th>Β</th>
<th>Γ</th>
<th>Δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Τ₁</td>
<td>0,10</td>
<td>0,15</td>
<td>0,20</td>
<td>0,20</td>
</tr>
<tr>
<td>Τ₂</td>
<td>0,40</td>
<td>0,60</td>
<td>0,80</td>
<td>1,20</td>
</tr>
</tbody>
</table>

Στις παραπάνω εξισώσεις:

Ο δείκτης συμπεριφοράς q εισάγει τη μείωση των σεισμικών επιταχύνσεων της πραγματικής κατασκευής λόγω μετελαστικής συμπεριφοράς, σε σχέση με τις επιταχύνσεις που προκύπτουν υπολογιστικά σε ελαστικό σύστημα, εκφράζει δε γενικά την ικανότητα ενός δομικού συστήματος να απορροφά ενέργεια μέσω πλάστιμης συμπεριφοράς ορισμένων μελών του, χωρίς να μειώνεται δραστικά η αντοχή του. Παράγοντες από τους οποίους
εξαρτάται ο δείκτης συμπεριφοράς, είναι η διαθέσιμη πλαστιμότητα, η υπερστατικότητα, η υστερητική απόσβεση και άλλοι. Η τιμή του q ορίζεται, γενικά, για ολόκληρο το κτίριο. Στη συνήθη περίπτωση κτιρίων από το ίδιο υλικό σε όλους τους ορόφους και με ορθογωνική διατάξη των κατακόρυφων στοιχείων δυσκαμψίας, η τιμή του q ορίζεται για κάθε κύρια διεύθυνση (x ή y) του κτιρίου ανάλογα με το αντίστοιχο δομικό σύστημα. Σε κτίρια από διαφορετικό υλικό ή δομικό σύστημα ανά όροφο, για κάθε όροφο και διεύθυνση λαμβάνεται η αντίστοιχη τιμή του q εφόσον δεν υπερβαίνει την ελάχιστη τιμή του q των υπερκείμενων όροφων. Στην αντίθετη περίπτωση η τιμή του q για κάθε όροφο και διεύθυνση λαμβάνεται ίση με την ελάχιστη τιμή του q των υπερκείμενων όροφων.

Στον Πίν. 1.5 φαίνονται οι μέγιστες επιπροσθέσεις τιμές του συντελεστή συμπεριφοράς q, ανάλογα με το υλικό και το δομικό σύστημα, σύμφωνα με τον ΕΑΚ2000.

Πίνακας 1.5: Μέγιστες Τιμές Συντελεστή Συμπεριφοράς q

<table>
<thead>
<tr>
<th>ΥΛΙΚΟ</th>
<th>ΔΟΜΙΚΟ ΣΥΣΤΗΜΑ</th>
<th>q</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. ΟΠΛΙΣΜΕΝΟ ΣΚΥΡΟΔΕΜΑ</td>
<td>α. Πλαίσια ή μικτά συστήματα</td>
<td>3,50</td>
</tr>
<tr>
<td></td>
<td>β. Συστήματα τοιχωμάτων που λειτουργούν ως πρόβολοι</td>
<td>3,00</td>
</tr>
<tr>
<td></td>
<td>γ. Συστήματα στα οποία ολόκληρο το 50% της συνολικής μάζας βρίσκεται στο ανώτερο 1/3 του ύψους</td>
<td>2,00</td>
</tr>
<tr>
<td>2. ΧΑΛΥΒΑΣ</td>
<td>α. Πλαίσια</td>
<td>4,00</td>
</tr>
<tr>
<td></td>
<td>β. Δικτυωτοί σύνδεσμοι με εκκεντρότητα</td>
<td>4,00</td>
</tr>
<tr>
<td></td>
<td>γ. Δικτυωτοί σύνδεσμοι χωρίς εκκεντρότητα</td>
<td>3,00</td>
</tr>
<tr>
<td></td>
<td>• Διαγώνιοι σύνδεσμοι</td>
<td>3,00</td>
</tr>
<tr>
<td></td>
<td>• Σύνδεσμοι τύπου V ή L</td>
<td>1,50</td>
</tr>
<tr>
<td></td>
<td>• Σύνδεσμοι τύπου Κ (όπου επιτρέπεται)</td>
<td>1,00</td>
</tr>
<tr>
<td>3. ΤΟΙΧΟΠΟΙΙΑ</td>
<td>α. Με οριζόντια διαζώματα</td>
<td>1,50</td>
</tr>
<tr>
<td></td>
<td>β. Με οριζόντια και κατακόρυφα διαζώματα</td>
<td>2,00</td>
</tr>
<tr>
<td></td>
<td>γ. Οπλισμένη (κατακόρυφα και οριζόντια)</td>
<td>2,50</td>
</tr>
<tr>
<td>4. ΞΥΛΟ</td>
<td>α. Πρόβολοι</td>
<td>1,00</td>
</tr>
<tr>
<td></td>
<td>β. Δοκοί – Τόξα - Κολλητά πετάσματα</td>
<td>1,50</td>
</tr>
<tr>
<td></td>
<td>γ. Πλαίσια με κοχλίωσεις</td>
<td>2,00</td>
</tr>
<tr>
<td></td>
<td>δ. Πετάσματα με ηλώσεις</td>
<td>3,00</td>
</tr>
</tbody>
</table>

Σε περίπτωση επιθυμητής ελαστικής συμπεριφοράς λαμβάνεται q = 1.

Ο διορθωτικός συντελεστής «η» εκφράζει την ανυξομείωση της επιρροής της επιρροής της ιξώδους απόσβεσης στην ελαστική περιοχή της συμπεριφοράς, όταν το ποσοστό της κρίσιμης απόσβεσης ζ είναι διάφορο του 5% και υπολογίζεται από τη σχέση:
\[\eta = \sqrt{\frac{7}{2 + \zeta}} \geq 0.7 \]

(1.14)

Οι τιμές της κρίσιμης απόσβεσης \(\zeta \) εξαρτώνται από το είδος της κατασκευής. Έτσι για συγκολλητή μεταλλική κατασκευή είναι \(\zeta = 2\% \), για κοχλιωτή είναι \(\zeta = 4\% \), ενώ για κατασκευή από σπιλισμένο σκυρόδεμα είναι \(\zeta = 5\% \).

Ο συντελεστής θεμελίωσης \(\theta \) εξαρτάται γενικά από το βάθος και τη δυσκαμψία της θεμελίωσης, εκφράζει δε την ευνοϊκή επιρροή της δύσκαμπτης θεμελίωσης όχι μόνο στη μείωση της έντασης της σεισμικής δόνησης από την επιφάνεια του εδάφους προς το θεμέλιο, αλλά και στη μείωση των κινδύνων διαφορικών καθιζήσεων λόγω δυναμικής διατμητικής συνίζησης χαλαρών εδαφών, αύξηση της αξιοπιστίας, κλπ.

Από άποψη σεισμικής επικινδυνότητας τα εδάφη κατατάσσονται σε πέντε κατηγορίες Α, Β, Γ, Δ και Χ, που περιγράφονται στον ΕΑΚ2000.

Σε εδάφη κατηγορίας Α ή Β ο συντελεστής \(\theta \) λαμβάνει την τιμή 1,0. Σε εδάφη κατηγορίας Γ ή Δ ο συντελεστής θεμελίωσης \(\theta \) επιτρέπεται να λαμβάνει μικρότερες τιμές, όταν συντρέχει τουλάχιστον μία από τις προϋποθέσεις που αναφέρονται στον Πίν. 1.6 και εφόσον η προκύπτουσα φασματική επιτάχυνση σχεδιασμού δεν είναι μικρότερη από εκείνη που θα προέκυπτε για εδάφος κατηγορίας Β.

Πίνακας 1.6: Συντελεστής θεμελίωσης \(\theta \)

<table>
<thead>
<tr>
<th>Προϋποθέσεις</th>
<th>(\theta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a. Το κτίριο διαθέτει ένα υπόγειο</td>
<td>1,0</td>
</tr>
<tr>
<td>1b. Η θεμελίωση του κτιρίου είναι γενική κοιτόστρωση</td>
<td>0,90</td>
</tr>
<tr>
<td>1γ. Η θεμελίωση του κτιρίου είναι με πασσάλους που φέρουν δοκούς σύνδεσης στην κεφαλή</td>
<td></td>
</tr>
<tr>
<td>2a. Το κτίριο διαθέτει δύο τουλάχιστον υπόγεια</td>
<td>0,80</td>
</tr>
<tr>
<td>2β. Το κτίριο διαθέτει ένα τουλάχιστον υπόγειο και η θεμελίωση είναι γενική κοιτόστρωση</td>
<td></td>
</tr>
<tr>
<td>2γ. Η θεμελίωση του κτιρίου είναι με πασσάλους που συνδέονται με ενιαίο κεφαλόδεσμο (όχι αναγκαστικά ενιαίου πάχους)</td>
<td></td>
</tr>
</tbody>
</table>

Παρατήρηση: Υπόγειος θεωρείται ένας όροφος όταν έχει περιμετρικά τοιχώματα, έτσι ώστε οι συνδεόμενες πλάκες να είναι πρακτικά αμετάθετες.

1.1.6 Άλλες δράσεις

 Πέραν των δράσεων που περιγράφηκαν στις προηγούμενες παραγράφους, πρέπει να λαμβάνονται υπόψη και μια σειρά από άλλες δράσεις κατά περίπτωση, όπως:

- θερμοκρασιακές μεταβολές
Κεφάλαιο 1: Βασικές αρχές σχεδιασμού

Οι οριακές καταστάσεις αστοχίας (Ultimate Limit States-ULS, πλαστικές αντοχές, απώλεια ευστάθειας, θραύση, κόπωση, ανατροπή κλπ), που συνδέονται με κατάρρευση ή με ισοδύναμες μορφές αστοχίας του φορέα ή τμήματός του.

Οι οριακές καταστάσεις λειτουργικότητας (Serviceability Limit States- SLS, μετατοπίσεις, ταλαντώσεις, ρηγματώσεις κλπ), που συνδέονται με συνθήκες πέραν των οποίων δεν πληρούνται πλέον οι καθορισμένες λειτουργικές απαιτήσεις για το φορέα ή για μέλος αυτού.

Οι οριακές καταστάσεις αστοχίας σχετίζονται με την ασφάλεια των ανθρώπων, την ασφάλεια του φορέα και την προστασία των περιεχομένων, αφορούν δε τις παρακάτω καταστάσεις:

Απώλεια ευστάθειας του φορέα θεωρούμενου ως άκαμπτο σώματος ή οποιουδήποτε μέρους του.

Αστοχία λόγω υπερβάλλουσας παραμόρφωσης, μετατροπής του φορέα ή οποιουδήποτε μέρους του σε μηχανισμό, θραύση, απώλεια ευστάθειας του φορέα ή οποιουδήποτε μέρους του, συμπεριλαμβανομένων των στηρίξεων και των θεμελίων.

Αστοχία η οποία προκαλείται από κόπωση ή άλλες επιδράσεις που εξαρτώνται από το χρόνο.

Οι οριακές καταστάσεις λειτουργικότητας αφορούν:

τις λειτουργικές απαιτήσεις από φορέα ή ένα δομικό μέλος υπό συνθήκες συνήθους χρήσης
tην άνεση των χρηστών
tην εξωτερική εμφάνιση των δομικών στοιχείων (πχ. έντονη καμπτική παραμόρφωση ή εκτεταμένη ρωγμάτωση).
Πρέπει να γίνεται διάκριση μεταξύ αναστρέψιμων και μη-αναστρέψιμων οριακών κατα-
stάσεων λειτουργικότητας.

Αναστρέψιμες οριακές καταστάσεις λειτουργικότητας είναι οι καταστάσεις των οποίων
tα αποτελέσματα αναρρώνονται μετά την απομάκρυνση των φορτίων (δράσεων) που τα
προκάλεσαν (π.χ. μεγάλες ελαστικές παραμορφώσεις).

Μη-αναστρέψιμες οριακές καταστάσεις λειτουργικότητας είναι οι καταστάσεις που συν-
dέονται με το γεγονός ότι, όταν απομακρυνθούν οι δράσεις θα παραμείνουν κάποιες συ-
nέπειες τους (π.χ. παραμένεις παραμορφώσεις υπό τα φορτία λειτουργίας).

Ο έλεγχος των οριακών καταστάσεων λειτουργικότητας πρέπει να βασίζεται σε κριτήρια,
τα οποία να αφορούν τα ακόλουθα θέματα:

Παραμορφώσεις, οι οποίες επηρεάζουν:
- την εμφάνισή
- την ανάσταση των χρηστών
- τη λειτουργία του έργου (συμπεριλαμβανομένης και της λειτουργίας των μηχανικώ-
tων ή των παρεξήγησης υπηρεσιών), ή οι οποίες προκάλεσαν ζημιά στους επιχρίσματα
 ή τα υπόλοιπα μη φέροντα στοιχεία.

Δονήσεις οι οποίες:
- προκαλούν ενόχληση στη λειτουργία του έργου.

Βλάβες, οι οποίες πολύ πιθανόν να επηρεάσουν αρνητικά:
- την εμφάνιση
- την ανθεκτικότητα
- τη λειτουργία του έργου.

Οι καταστάσεις αυτές (ULS και SLS) προσεγγίζονται με προσαύξηση των φορτίων λει-
tουργίας του φορέα μέσω των επιμέρους συντελεστών ασφάλειας (partial safety factors),
oι οποίοι είναι σχεδόν πάντα μεγαλύτεροι ή ίσοι προς τη μονάδα. Τα προκύπτοντα φορτία
ονομάζονται φορτία ή δράσεις σχεδιασμού και χρησιμοποιούνται υπό μορφή συνδυα-
sιμόν για το σχεδιασμό του φορέα. Ο σχεδιασμός θα πρέπει να βασίζεται στην χρήση κα-
tάλληλων για τη συγκεκριμένη οριακή κατάσταση και πρέπει να ελέγχεται ότι δεν υπάρχει υπέρβαση σε καμία οριακή κατάσταση.

Οι καταστάσεις σχεδιασμού ενός φορέα για τις οποίες γίνεται έλεγχος επάρκειας σε σχέ-
sη με τις προαναφεγγόμενες οριακές καταστάσεις αστοχίας ή λειτουργικότητας είναι οι
ακόλουθες:
- Καταστάσεις σχεδιασμού με διάρκεια, οι οποίες αναφέρονται στις συνθήκες κανο-
 νικής χρήσης.
Κεφάλαιο 1: Βασικές αρχές σχεδιασμού

Παροδικές καταστάσεις σχεδιασμού, οι οποίες αναφέρονται σε προσωρινές συνθήκες που επιβάλλονται στο φορέα, π.χ. κατά τη διάρκεια της εκτέλεσης ή της επισκευής του.

Τυχηματικές καταστάσεις σχεδιασμού, οι οποίες αναφέρονται σε εξαιρετικές συνθήκες που επιβάλλονται στο φορέα, π.χ. πυρκαγιά, έκρηξη, πρόσκρουση.

Καταστάσεις σχεδιασμού έναντι σεισμού, που αναφέρονται σε συνθήκες οι οποίες επιβάλλονται στο φορέα, όταν αυτός εκτίθεται σε σεισμικά γεγονότα.

1.3 Συνδυασμοί δράσεων

Ανάλογα με το είδος, τη μορφή και τη θέση της κατασκευής, προσδιορίζονται οι διάφορες χαρακτηριστικές τιμές των δράσεων, οι οποίες επενεργούν επ' αυτής. Οι δράσεις αυτές, πολλαπλασιασμένες με κατάλληλους συντελεστές (επιμέρους συντελεστές ασφαλείας γ'), συνδυάζονται μεταξύ τους καταλλήλως (συντελεστές συνδυασμού ψ) για κάθε μία από τις δύο οριακές καταστάσεις και στη συνέχεια εφαρμόζονται επί του φορέα. Είναι προφανές ότι οι δράσεις που υπεισέρχονται στους συνδυασμούς, επενεργούν και εκδηλώνονται ταυτόχρονα.

1.3.1 Οριακή κατάσταση αστοχίας

Ανάλογα με την περίσταση θα ελέγχονται οι ακόλουθες οριακές καταστάσεις αστοχίας:

i) EQU: Απώλεια στατικής ισορροπίας του φορέα ή οποιουδήποτε μέρους του, θεωρούμενου ως άκαμπτου σώματος.

ii) STR: Εσωτερική αστοχία ή υπερβάλλουσα παραμόρφωση του φορέα ή δομικών μελών του, όπως υποστυλωμάτων, δοκών, πεδίλων θεμελίωσης, πασσάλων, τοιχωμάτων υπογείων κλπ.

iii) GEO: Αστοχία ή υπερβάλλουσα παραμόρφωση του εδάφους.

iv) FAT: Αστοχία λόγω κόπωσης του φορέα ή των δομικών μελών.

Οι συνδυασμοί σχεδιασμού για τον έλεγχο στην οριακή κατάσταση αστοχίας, είναι οι ακόλουθοι:

α. Για καταστάσεις διάρκειας ή παροδικές

\[\sum_{j=1}^{\gamma} G_{G,j} + \gamma_{p} P + \gamma_{q,1} O_{q,k} + \sum_{i=1}^{\gamma} \psi_{0,i} O_{k,i} \]

(1.15)

β. Για τυχηματικές καταστάσεις

\[\sum_{j=1}^{\gamma} G_{G,j} + P + A_{d} + \psi_{1,1} O_{q,k} + \sum_{i=1}^{\gamma} \psi_{2,i} O_{k,i} \]

(1.16)
γ. Για καταστάσεις σεισμού

\[\sum_{j=1}^{n} G_{k,j} + P + A_{Ed} + \sum_{i=1}^{m} \psi_i Q_{k,i} \]

(1.17)

Η μορφή των συνδυασμών είναι συμβολική και το σύμβολο του αθροίσματος δεν σημαίνει εδώ αλγεβρική ή γεωμετρική άθροιση, αλλά απλώς επαλληλική δράση (δηλαδή ταυτόχρονη συνύπαρξη των διαφόρων δράσεων).

Τα σύμβολα στους συνδυασμούς αυτούς είναι τα εξής:

"+" σημαίνει "επαλληλικία με"

\(G_{k,j} \) χαρακτηριστική τιμή των μονίμων δράσεων

\(P \) χαρακτηριστική τιμή της προέντασης

Πίνακας 1.7 Προτεινόμενες τιμές των συντελεστών \(\psi \) για κτίρια

<table>
<thead>
<tr>
<th>Δράσεις</th>
<th>(\psi_0)</th>
<th>(\psi_1)</th>
<th>(\psi_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Επιβαλλόμενα φορτία σε κτίρια, κατηγορία (βλέπτε EN 1991-1-1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Κατηγορία Α: κατοικίες, συνήθη κτίρια κατοικιών</td>
<td>0,7</td>
<td>0,5</td>
<td>0,3</td>
</tr>
<tr>
<td>Κατηγορία Β: χώροι γραφείων</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Κατηγορία Ζ: χώροι συνάθροισης</td>
<td>0,7</td>
<td>0,5</td>
<td>0,3</td>
</tr>
<tr>
<td>Κατηγορία Ο: χώροι καταστημάτων</td>
<td>0,7</td>
<td>0,7</td>
<td>0,6</td>
</tr>
<tr>
<td>Κατηγορία Ξ: χώροι αποθήκευσης</td>
<td>0,7</td>
<td>0,7</td>
<td>0,6</td>
</tr>
<tr>
<td>Κατηγορία Ξ: χώροι κυκλοφορίας οχημάτων βάρους οχημάτων (\leq 30) kN</td>
<td>1,0</td>
<td>0,9</td>
<td>0,8</td>
</tr>
<tr>
<td>Κατηγορία Ξ: χώροι κυκλοφορίας οχημάτων (30) kN (\leq) βάρους οχημάτων (\leq 160) kN</td>
<td>0,7</td>
<td>0,7</td>
<td>0,6</td>
</tr>
<tr>
<td>Κατηγορία Η: στέγες</td>
<td>0,7</td>
<td>0,5</td>
<td>0,3</td>
</tr>
<tr>
<td>Φορτία χιονιού επάνω σε κτίρια (βλέπτε EN 1991-1-3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Φινλανδία, Ισλανδία, Νορβηγία, Σουηδία</td>
<td>0,7</td>
<td>0,5</td>
<td>0,2</td>
</tr>
<tr>
<td>Υπόλοιπα Κράτη: Κράτη Μέλη του CEN για τοποθεσίες που βρίσκονται σε υψόμετρο (H > 1000) m</td>
<td>0,7</td>
<td>0,5</td>
<td>0,2</td>
</tr>
<tr>
<td>Υπόλοιπα Κράτη: Κράτη Μέλη του CEN για τοποθεσίες που βρίσκονται σε υψόμετρο (H \leq 1000) m</td>
<td>0,5</td>
<td>0,2</td>
<td>0</td>
</tr>
<tr>
<td>Фορτία ανέμου σε κτίρια (βλέπε EN 1991-1-4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Φορτία ανέμου σε κτίρια (βλέπε EN 1991-1-4)</td>
<td>0,6</td>
<td>0,2</td>
<td>0</td>
</tr>
<tr>
<td>Θερμοκρασία (εκτός-πυρκαϊάς) σε κτίρια (βλ. EN 1991-1-5)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

0,6 | 0,5 | 0 |
Κεφάλαιο 1: Βασικές αρχές σχεδιασμού

$Q_{k,1}$ χαρακτηριστική τιμή της επικρατέστερης μεταβλητής δράσης
$Q_{k,i}$ χαρακτηριστική τιμή των λοιπών μεταβλητών δράσεων i που συνυπάρχουν
A_d τιμή σχεδιασμού της τυχηματικής δράσης
A_{Ed} τιμή σχεδιασμού της σεισμικής δράσης
$\gamma_{G,j}$ επιμέρους συντελεστές ασφαλείας για τη μόνιμη δράση j
γ_p επιμέρους συντελεστές ασφαλείας για την προένταση
$\gamma_{Q,i}$ επιμέρους συντελεστής ασφαλείας για τη μεταβλητή δράση i
$\psi_{0,i}$, $\psi_{1,i}$, $\psi_{2,i}$ συντελεστές συνδυασμού των μεταβλητών δράσεων (δείτε τον Πίνακα 1.7).

Κατά την εξέταση μιας οριακής κατάστασης στατικής ισορροπίας του φορέα (EQU), θα ελέγχεται ότι:

$$E_{d,dst} \leq E_{d,stb}$$

(1.18)

όπου:
$E_{d,dst}$ η τιμή σχεδιασμού του αποτελέσματος των αποσταθεροποιητικών δράσεων
$E_{d,stb}$ η τιμή σχεδιασμού του αποτελέσματος των δράσεων που συμβάλλουν στην ευστάθεια.

Κατά την εξέταση μιας οριακής κατάστασης αστοχίας ή υπερβολικής παραμόρφωσης μιας διατομής, ενός στοιχείου ή μιας συνδέσης (STR και/ή GEO) θα ελέγχεται ότι:

$$E_d \leq R_d$$

(1.19)

όπου:
E_d η τιμή σχεδιασμού του αποτελέσματος δράσεων, π.χ. εντατικό μέγεθος (N, M, V) ή ένα διάνυσμα που εκφράζει διάφορα εντατικά μεγέθη
R_d η τιμή σχεδιασμού της αντίστοιχης αντοχής.

Οι τιμές του γ που προτείνονται για τους ελέγχους STR και/ή GEO είναι οι ακόλουθες:

$\gamma_{Gj, sup} = 1,35$
$\gamma_{Gj, inf} = 1,00$
$\gamma_{Q,1} = 1,50 \text{ όπου είναι δυσμενής (0 όπου είναι ευνοϊκή)}$
$\gamma_{Q,i} = 1,50 \text{ όπου είναι δυσμενής (0 όπου είναι ευνοϊκή).}$
1.3.2 Οριακή κατάσταση λειτουργικότητας

Οι συνδυασμοί σχεδιασμού που ορίζονται για τον έλεγχο στην οριακή κατάσταση λειτουργικότητας, είναι οι ακόλουθοι:

α. Χαρακτηριστικός συνδυασμός

\[
\sum_{j=1} G_{k,j} + \sum_{i=1} \psi_{O_{k,i}} \geq \psi \tag{1.20}
\]

β. Συχνός συνδυασμός

\[
\sum_{j=1} G_{k,j} + \sum_{i=1} \psi_{O_{k,i}} \geq \psi \tag{1.21}
\]

γ. Όινεί μόνιμος συνδυασμός

\[
\sum_{j=1} G_{k,j} + \sum_{i=1} \psi_{O_{k,i}} \geq \psi \tag{1.22}
\]

Θα ελέγχεται ότι:

\[
E_d \leq C_d \tag{1.23}
\]

όπου:

- \(C_d\) η οριακή τιμή σχεδιασμού του συναφούς κριτηρίου λειτουργικότητας,
- \(E_d\) η τιμή σχεδιασμού των αποτελεσμάτων των δράσεων, οι οποίες καθορίζονται στα πλαίσια του κριτηρίου λειτουργικότητας, και η οποία προσδιορίζεται βάσει του σχετικού συνδυασμού.

1.4 Υλικά

Ο δομικός χάλυβας είναι το βασικό υλικό από το οποίο συντίθεται ο φέρων οργανισμός των χαλύβδινων κτηριακών και λοιπών τεχνικών έργων. Είναι κράμα με βασικό συστατικό τον σίδηρο (Fe) και διάφορα άλλα μεταλλικά και μη στοιχεία σε μικρή αναλογία, όπως άνθρακας (C), Μαγγάνιο (Mn), Πυρίτιο (Si), Νικέλιο (Ni), Χαλκός (Cu), Χρώμιο (Cr), Μολυβδαίνιο (Mo), Βανάδιο (V), Ζιρκόνιο (Zr), Θείο (S), Φωσφόρος (P) κλπ., ορισμένα εκ των οποίων είναι ανεπιθύμητα, επειδή επηρεάζουν δυσμενώς κάποια χαρακτηριστικά του χάλυβα.

Η ποσοστιαία συμμετοχή των στοιχείων αυτών προσδιορίζει τις χαρακτηριστικές ιδιότητες του χάλυβα (αντοχή, συγκολλησιμότητα, ευαευθεία στη διάβρωση, ολκιμότητα κλπ.), μικρή δε μεταβολή της αναλογίας αυτής οδηγεί στη δημιουργία άλλου είδους χάλυβα. Έτσι, αναφορικά με την περιεκτικότητα σε άνθρακα, που είναι από τα κυρίτερα
συστατικά του χάλυβα, αυτή ποικίλει από 0,15% έως 1,70%, οι συνήθεις δε δομικοί χάλυβες έχουν περιεκτικότητα σε άνθρακα μεταξύ 0,15% και 0,29%.

Τα κυρίωτερα πλεονεκτήματα του χάλυβα, τα οποία του προσδίδουν το χαρακτηρισμό του πλέον ενελκτού και ίσως του καλύτερου σήμερα δομικού υλικού, είναι τα ακόλουθα:

- Μεγάλη αντοχή ή μεγάλος λόγος αντοχής προς ίδιο βάρος. Αυτό οδηγεί σε λεπτές διατομές, μείωση των ιδίων βαρών του φέροντα οργανισμού, οικονομία χώρου και υλικού, ξεύξη μεγάλων ανοιγμάτων χωρίς ενδιάμεση υποστήλωση κλπ (π.χ. γέφυρες μεγάλων ανοιγμάτων, υψηλά κτίρια και κατασκευές με κακές συνθήκες θεμελίωσης).

- Ομογένεια υλικού. Τα χαρακτηριστικά του είναι σταθερά σε κάθε σημείο της μάζας του υλικού, γεγονός που εξασφαλίζει την ακρίβεια των παραδοχών ανάλυσης και των ελέγχων αντοχής.

- Μονιμότητα. Τα χαρακτηριστικά του είναι αμετάβλητα στο χρόνο, εφ' όσον δε παρέχεται η κατάλληλη συντήρηση, εξασφαλίζεται απεριόριστη διάρκεια ζωής της κατασκευής.

- Ελαστικότητα. Ο χάλυβας συμπεριφέρεται ελαστικά μέχρι σχετικά υψηλές τάσεις, τα γεωμετρικά και αδρανειακά χαρακτηριστικά του προσδιορίζονται με μεγάλη ακρίβεια.

- Ολκιμότητα. Είναι η ικανότητα του χάλυβα να υπόκειται σε μεγάλες παραμορφώσεις χωρίς να αστοχεί. Επειδή, αν ένα τεμάχιο χάλυβα με μικρή περιεκτικότητα σε άνθρακα υποβάλλεται σε εφελκυσμό, επιμηκύνεται σημαντικά με ταυτόχρονη μείωση της διατομής του στο σημείο αστοχίας, προκειμένου να επέλθει η τελική θραύση. Υλικό που δεν διατηρείται αυτή την ιδιότητα, χαρακτηρίζεται ως ψαθυρό και αν υποβληθεί σε εφελκυσμό ή παράλογη στοιχεία υπό τα φορτία και σε συνδυασμό με αποτέλεσμα, ανακατανομή της έντασης και την πρόληψη πρόωρης αστοχίας. Επιπλέον, η κατασκευή υποβάλλεται σε κακές συνθήκες, οι μεγάλες παραμορφώσεις χωρίς την ολκιμότητα, είναι ικανότητα να αντιμετωπίσει την πρόληψη της αστοχίας.

- Η ταχύτητα εκτέλεσης.

- Βιομηχανικό κατά το μεγαλύτερο μέρος του προϊόντος με ελεγχόμενη εκ τούτου ποιότητα.

- Το σχετικά μικρό βάρος των χαλύβδινων κατασκευών συνεπάγεται μικρότερες αδρανειακές σεισμικές δυνάμεις. Σε συνδυασμό με την ικανότητα ανάπτυξης σημαντικών παραμορφώσεων και απορρόφησης ενέργειας, καθίσταται ο χάλυβας ιδανικό υλικό για αντισεισμικές κατασκευές.
ΣΧΕΔΙΑΣΜΟΣ ΔΟΜΙΚΩΝ ΕΡΓΩΝ ΑΠΟ ΧΑΛΥΒΑ
ΜΕ ΠΑΡΑΔΕΙΓΜΑΤΑ ΕΦΑΡΜΟΓΗΣ

Το παρόν βιβλίο καλύπτει θέματα μόρφωσης, ανάλυσης, διαστασιολογήσεις και εκτέλεσης
δομικών έργων από χάλυβα και περιέχει μια σειρά παραδειγμάτων εφαρμογής.

Στο θεωρητικό μέρος παρουσιάζονται και επεξεργαστούνται οι διατάξεις των τελικών κειμένων των
Ευρωκυβίδων σε ό, τι αφορά την ανάλυση και διαστασιολόγηση φορέων, μελών, και
συνδέσεων, καθώς και ελέγχους σε συνθήκες πυρκαγιάς.

Στη συνέχεια δίνονται κανόνες μόρφωσης και ανάλυσης μονώρωφων μεταλλικών κτιρίων και
dιάταξης των δομικών τους στοιχείων (επικαλύψεων, τεγίδων, μηκιδών, δοκών, υποστηρικτών,
edράσεων, συνδέσμων δυσκαμψίας, κ.λπ.), περιλαμβανομένων των γερανογεφυρών και των
dοκών τους κύλισης.

Ακολουθούν κανόνες μόρφωσης και ανάλυσης πολυώρωφων κτιρίων από σύμμετρη κατασκευή
με έμφαση στην ανάλυση σύμμετρων πλακών, δοκών και υποστηρικτών.

Τα θέματα εκτέλεσης πραγματεύονται τη βιομηχανική επεξεργασία, την ανέγερση και τον
ποιοτικό έλεγχο.

Τέλος, δίνεται μια σειρά παραδειγμάτων εφαρμογής για την καλύτερη κατανόηση των
απαιτούμενων ελέγχων. Τα παραδείγματα καλύπτουν ένα μεγάλο εύρος εφαρμογών με ερμηνείες
cατά την κρίση των συγγραφέων και προτάσεις για εναλλακτικές λύσεις.

Οι συγγραφείς
Οι Ι. Βάγιας, Ι. Ερμόπουλος και Γ. Ιωαννίδης είναι Καθηγητές της Σχολής Πολιτικών Μηχανικών ΕΜΠ με
πολυετή διδακτική και πρακτική εμπειρία στις μεταλλικές κατασκευές.

Εκδόσεις
ΚΛΕΙΔΑΡΙΘΜΟΣ
Δημαρκου 4, Σταθμός Λαρίσης, 10440 ΑΘΗΝΑ, Τηλ. 210-5237635
info@klidarithmos.gr www.klidarithmos.gr
www.facebook.com/klidarithmos.gr
9789604615827