Μαθηματικά

Γ΄ Γυμνασίου

όλων των επιπέδων

- 🗷 Λυμένες ασκήσεις
- 🛮 Ασκήσεις για λύση
- Διαγωνίσματα
- 🛮 Θέματα
- Λύσεις των ασκήσεων και του Σχολικού Βιβλίου

ПЕРІЕХОМЕНА

Α' ΜΕΡΟΣ • ΑΛΓΕΒΡΑ

ΚΕΦΑΛΑΙΟ 1° ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ

1. Πράξεις με πραγματικούς αριθμούς	8
2. Δυνάμεις πραγματικών αριθμών	24
3. Τετραγωνική ρίζα πραγματικού αριθμού	38
4. Αλγεβρικές παραστάσεις – Μονώνυμα	53
5. Πράξεις με μονώνυμα	50
6. • Πολυώνυμα• Πρόσθεση και Αφαίρεση πολυωνύμων	58
7. Πολλαπλασιασμός πολυωνύμων	30
8. Αξιοσημείωτες ταυτότητες)2
9. Παραγοντοποίηση αλγεβρικών παραστάσεων	23
10. Ρητές αλγεβρικές παραστάσεις	51
11. Πολλαπλασιασμός – Διαίρεση ρητών παραστάσεων	70
12. ΕΚΠ και ΜΚΔ ακέραιων αλγεβρικών παραστάσεων	75
13. Πρόσθεση – Αφαίρεση ρητών παραστάσεων	78
ΚΕΦΑΛΑΙΟ 2° ΕΞΙΣΩΣΕΙΣ – ΑΝΙΣΩΣΕΙΣ	
14. Η εξίσωση $αx + β = 0$	90
15. Επίλυση εξισώσεων 2°υ βαθμού με ανάλυση σε γινόμενο παραγόντων 19)4
16. Επίλυση εξισώσεων 2 ^{ου} βαθμού με τη βοήθεια τύπου)5
17. Προβλήματα εξισώσεων δευτέρου βαθμού	16
18. Κλασματικές εξισώσεις	21
19. Ανισότητες – Ανισώσεις με έναν άγνωστο	30

ΚΕΦΑΛΑΙΟ 3° ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ
20. Η έννοια της γραμμικής εξίσωσης
21. Η έννοια του γραμμικού συστήματος και η γραφική επίλυσή του
22. Αλγεβρική επίλυση γραμμικού συστήματος
23. Η συνάρτηση $y = \alpha x^2$ με $\alpha \neq 0$
ΚΕΦΑΛΑΙΟ 4° ΠΙΘΑΝΟΤΗΤΕΣ
24. Σύνολα
25. Δειγματικός χώρος – Ενδεχόμενα
26. Έννοια της πιθανότητας
B' ΜΕΡΟΣ • ΓΕΩΜΕΤΡΙΑ – ΤΡΙΓΩΝΟΜΕΤΡΙΑ
ΚΕΦΑΛΑΙΟ 5° $ΓΕΩΜΕΤΡΙΑ$
27. Ισότητα τριγώνων
28. Λόγος ευθύγραμμων τμημάτων
29. Όμοια πολύγωνα
30. Όμοια τρίγωνα
31. Λόγος εμβαδών ομοίων σχημάτων
ΚΕΦΑΛΑΙΟ 6° ΤΡΙΓΩΝΟΜΕΤΡΙΑ
32. Τριγωνομετρικοί αριθμοί γωνίας $ω$ με $0^{\circ} \le ω \le 180^{\circ}$
33. Τριγωνομετρικοί αριθμοί παραπληρωματικών γωνιών
34. Σχέσεις μεταξύ τριγωνομετρικών αριθμών μιας γωνίας
35. • Νόμος των ημιτόνων
• Νόμος των συνημιτότων
©EMATA
ΔΙΑΓΩΝΙΣΜΑΤΑ
Λύσεις των Ασκήσεων για λύση και Θεμάτων
Λύσεις των Ασκήσεων του σχολικού βιβλίου

Αξιοσημείωτες ταυτότητες

Ταυτότητα λέγεται κάθε ισότητα που περιέχει μεταβλητές και αληθεύει για όλες τις τιμές των μεταβλητών της.

Υπάρχουν ταυτότητες που τις συναντάμε συχνά και γι' αυτό αξίζει να τις θυμόμαστε. **Αξιοσημείωτες ταυτότητες** είναι:

Α. Τετράγωνο αθροίσματος - διαφοράς

Να αποδείξετε ότι:

$$\alpha$$
. $(\alpha + \beta)^2 = \alpha^2 + 2\alpha\beta + \beta^2$

$$\beta. (\alpha - \beta)^2 = \alpha^2 - 2\alpha\beta + \beta^2$$

Απόδειξη

Είναι:

$$\alpha. (\alpha+\beta)^2 = (\alpha+\beta)\cdot(\alpha+\beta) = \alpha^2 + \alpha\beta + \beta\alpha + \beta^2 = \alpha^2 + 2\alpha\beta + \beta^2$$

β.
$$(\alpha - \beta)^2 = (\alpha - \beta) \cdot (\alpha - \beta) = \alpha^2 - \alpha\beta - \beta\alpha + \beta^2 = \alpha^2 - 2\alpha\beta + \beta^2$$

παραδείγματα: • Να βρείτε το ανάπτυγμα $A = (x+3)^2$.

Βήμα 1	$A = (x+3)^2$	αναγνωρίζουμε τη μορφή $(\alpha + \beta)^2$
Βήμα 2	$A = x^2 + 2 \cdot x \cdot 3 + 3^2$	εφαρμόζουμε την ταυτότητα $(\alpha+\beta)^2=\alpha^2+2\alpha\beta+\beta^2$ με $\alpha=x$ και $\beta=3$
Βήμα 3	$A = x^2 + 6x + 9$	εκτελούμε τις πράξεις

• Να βρείτε το ανάπτυγμα $B = (3x - 5y)^2$.

Βήμα 1	$B = (3x - 5y)^2$	αναγνωρίζουμε τη μορφή $(\alpha - \beta)^2$
Βήμα 2	$B = (3x)^2 - 2 \cdot 3x \cdot 5y + (5y)^2$	εφαρμόζουμε την ταυτότητα $(\alpha-\beta)^2=\alpha^2-2\alpha\beta+\beta^2$ με $\alpha=3x$ και $\beta=5y$
Βήμα 3	$B = 9x^2 - 30xy + 25y^2$	εκτελούμε τις πράξεις

Κύβος αθροίσματος - διαφοράς В.

Να αποδείξετε ότι:

$$\alpha$$
. $(\alpha + \beta)^3 = \alpha^3 + 3\alpha^2\beta + 3\alpha\beta^2 + \beta^3$

$$\beta. (\alpha - \beta)^3 = \alpha^3 - 3\alpha^2\beta + 3\alpha\beta^2 - \beta^3$$

Απόδειξη

Έχουμε:

α.
$$(\alpha + \beta)^3 = (\alpha + \beta) \cdot (\alpha + \beta)^2$$
$$= (\alpha + \beta) \cdot (\alpha^2 + 2\alpha\beta + \beta^2)$$
$$= \alpha^3 + 2\alpha^2\beta + \alpha\beta^2 + \alpha^2\beta + 2\alpha\beta^2 + \beta^3$$
$$= \alpha^3 + 3\alpha^2\beta + 3\alpha\beta^2 + \beta^3$$

$$= (\alpha + \beta) \cdot (\alpha + \beta)^{2}$$

$$= (\alpha + \beta) \cdot (\alpha^{2} + 2\alpha\beta + \beta^{2})$$

$$= \alpha^{3} + 2\alpha^{2}\beta + \alpha\beta^{2} + \alpha^{2}\beta + 2\alpha\beta^{2} + \beta^{3}$$

$$= \alpha^{3} + 3\alpha^{2}\beta + 3\alpha\beta^{2} + \beta^{3}$$

$$= \alpha^{3} - 3\alpha^{2}\beta + 3\alpha\beta^{2} - \beta^{3}$$

$$= \alpha^{3} - 3\alpha^{2}\beta + 3\alpha\beta^{2} - \beta^{3}$$

παραδείγματα:

• Να βρείτε το ανάπτυγμα $A = (x+2)^3$.

Βήμα 1	$A = (x+2)^3$	αναγνωρίζουμε τη μορφή $(\alpha + \beta)^3$
Βήμα 2	$A = x^{3} + 3 \cdot x^{2} \cdot 2 + 3 \cdot x \cdot 2^{2} + 2^{3}$	$ \begin{aligned} & \epsilon \phi \alpha \rho \mu \acute{o} \zeta o \upsilon \mu \epsilon \ t \eta \nu \ t \alpha \upsilon t \acute{o} t \eta \tau \alpha \\ & (\alpha + \beta)^3 = \alpha^3 + 3\alpha^2 \beta + 3\alpha \beta^2 + \beta^3 \\ & \mu \epsilon \alpha = x \kappa \alpha \iota \beta = 2 \end{aligned} $
Βήμα 3	$A = x^3 + 6x^2 + 12x + 8$	εκτελούμε τις πράξεις

• Να βρείτε το ανάπτυγμα $B = (2x-1)^3$.

Βήμα 1	$B = (2x - 1)^3$	αναγνωρίζουμε τη μορφή $(\alpha-\beta)^3$
Βήμα 2	B = $(2x)^3 - 3 \cdot (2x)^2 \cdot 1 + 3 \cdot 2x \cdot 1^2 - 1^3$	εφαρμόζουμε την ταυτότητα $(\alpha-\beta)^3=\alpha^3-3\alpha^2\beta+3\alpha\beta^2-\beta^3$ με $\alpha=2x$ και $\beta=1$
Βήμα 3	$B = 8x^3 - 12x^2 + 6x - 1$	εκτελούμε τις πράξεις

Γ. Γινόμενο αθροίσματος επί διαφορά

Να αποδείξετε ότι

$$(\alpha + \beta) \cdot (\alpha - \beta) = \alpha^2 - \beta^2$$

Απόδειξη

Έχουμε

$$(\alpha + \beta) \cdot (\alpha - \beta) = \alpha^2 - \alpha\beta + \beta\alpha - \beta^2$$
$$= \alpha^2 - \beta^2$$

παραδείγματα:

• Να βρείτε το ανάπτυγμα $A = (x+3) \cdot (x-3)$.

Βήμα 1	$A = (x+3) \cdot (x-3)$	αναγνωρίζουμε τη μορφή $(\alpha+\beta)\cdot(\alpha-\beta)$
Βήμα 2	$A = x^2 - 3^2$	εφαρμόζουμε την ταυτότητα $(\alpha+\beta)\cdot(\alpha-\beta)=\alpha^2-\beta^2$ με $\alpha=x$ και $\beta=3$
Βήμα 3	$A = x^2 - 9$	εκτελούμε τις πράξεις

• Να βρείτε το ανάπτυγμα $B = (4x + 7) \cdot (4x - 7)$.

Βήμα 1	$B = (4x+7)\cdot(4x-7)$	αναγνωρίζουμε τη μορφή $(\alpha+\beta)\cdot(\alpha-\beta)$
Βήμα 2	$B = (4x)^2 - 7^2$	εφαρμόζουμε την ταυτότητα $(\alpha+\beta)\cdot(\alpha-\beta)=\alpha^2-\beta^2$ με $\alpha=4x$ και $\beta=7$
Βήμα 3	$B = 16x^2 - 49$	εκτελούμε τις πράξεις

Δ. Διαφορά κύβων - Άθροισμα κύβων

Να αποδείξετε ότι:

$$\alpha$$
. $(\alpha + \beta) \cdot (\alpha^2 - \alpha\beta + \beta^2) = \alpha^3 + \beta^3$

$$\beta. \ (\alpha - \beta) \cdot (\alpha^2 + \alpha \beta + \beta^2) = \alpha^3 - \beta^3$$

Απόδειξη

Έχουμε:

$$\textbf{a.} \ (\alpha+\beta) \cdot (\alpha^2 - \alpha\beta + \beta^2) \ = \ \alpha^3 - \alpha^2\beta + \alpha\beta^2 + \alpha^2\beta - \alpha\beta^2 + \beta^3 = \ \alpha^3 + \beta^3$$

$$\beta. \ (\alpha-\beta)\cdot(\alpha^2+\alpha\beta+\beta^2) \ = \ \alpha^3+\alpha^2\beta+\alpha\beta^2-\alpha^2\beta-\alpha\beta^2-\beta^3 \ = \ \alpha^3-\beta^3$$

παραδείγματα:

• Να βρείτε το ανάπτυγμα $A = (x+2) \cdot (x^2 - 2x + 4)$.

Βήμα 1	$A = (x+2) \cdot (x^2 - 2x + 2^2)$	αναγνωρίζουμε τη μορφή $(\alpha+\beta)\cdot(\alpha^2-\alpha\beta+\beta^2)$
Βήμα 2	$A = x^3 + 2^3$	εφαρμόζουμε την ταυτότητα $(\alpha+\beta)\cdot(\alpha^2-\alpha\beta+\beta^2)=\alpha^3+\beta^3$ με $\alpha=x$ και $\beta=2$
Βήμα 3	$A = x^3 + 8$	εκτελούμε τις πράξεις

• Na breite to anapturma $B = (x-1) \cdot (x^2 + x + 1)$.

Βήμα 1	B = $(x-1) \cdot (x^2 + x \cdot 1 + 1^2)$	αναγνωρίζουμε τη μορφή $(\alpha - \beta) \cdot (\alpha^2 + \alpha\beta + \beta^2)$
Βήμα 2	$B = x^3 - 1^3$	εφαρμόζουμε την ταυτότητα $(\alpha-\beta)\cdot(\alpha^2+\alpha\beta+\beta^2)=\alpha^3-\beta^3$ με $\alpha=x$ και $\beta=1$
Βήμα 3	$B = x^3 - 1$	εκτελούμε τις πράξεις

Ε. Τετράγωνο τριωνόμου

Να αποδείξετε ότι:

$$\alpha. (\alpha + \beta + \gamma)^2 = \alpha^2 + \beta^2 + \gamma^2 + 2\alpha\beta + 2\beta\gamma + 2\gamma\alpha$$

$$\beta. \ (\alpha - \beta + \gamma)^2 = \alpha^2 + \beta^2 + \gamma^2 - 2\alpha\beta - 2\beta\gamma + 2\gamma\alpha$$

$$\gamma. \quad (\alpha - \beta - \gamma)^2 = \alpha^2 + \beta^2 + \gamma^2 - 2\alpha\beta + 2\beta\gamma - 2\gamma\alpha$$

Απόδειξη

α. Είναι
$$(\alpha + \beta + \gamma)^2 = (\alpha + \beta + \gamma) \cdot (\alpha + \beta + \gamma)$$

$$= \alpha^2 + \alpha\beta + \alpha\gamma + \beta\alpha + \beta^2 + \beta\gamma + \gamma\alpha + \gamma\beta + \gamma^2$$

$$= \alpha^2 + \beta^2 + \gamma^2 + 2\alpha\beta + 2\beta\gamma + 2\gamma\alpha$$

β. Είναι
$$(\alpha - \beta + \gamma)^2 = [\alpha + (-\beta) + \gamma]^2$$
.

Οπότε, αν θέσουμε στην προηγούμενη ταυτότητα όπου β το $-\beta$, έχουμε

$$(\alpha - \beta + \gamma)^2 = \alpha^2 + (-\beta)^2 + \gamma^2 + 2\alpha \cdot (-\beta) + 2(-\beta) \cdot \gamma + 2\gamma\alpha$$
$$= \alpha^2 + \beta^2 + \gamma^2 - 2\alpha\beta - 2\beta\gamma + 2\gamma\alpha$$

$$\gamma$$
. Είναι $(\alpha - \beta - \gamma)^2 = [\alpha + (-\beta) + (-\gamma)]^2$.

Οπότε, αν θέσουμε στην πρώτη ταυτότητα όπου β το $-\beta$ και όπου γ το $-\gamma$, έχουμε

$$(\alpha - \beta - \gamma)^2 = \alpha^2 + (-\beta)^2 + (-\gamma)^2 + 2\alpha \cdot (-\beta) + 2(-\beta) \cdot (-\gamma) + 2(-\gamma) \cdot \alpha$$
$$= \alpha^2 + \beta^2 + \gamma^2 - 2\alpha\beta + 2\beta\gamma - 2\gamma\alpha$$

παραδείγματα:

• Να βρείτε το ανάπτυγμα $A = (2x + 3y + 1)^2$.

Βήμα 1	$A = (2x + 3y + 1)^2$	αναγνωρίζουμε τη μορφή $ (\alpha + \beta + \gamma)^2 $
Βήμα 2	$A = (2x)^{2} + (3y)^{2} + 1^{2} + $ $+ 2 \cdot 2x \cdot 3y + 2 \cdot 3y \cdot 1 + 2 \cdot 1 \cdot 2x$	εφαρμόζουμε την ταυτότητα $(\alpha+\beta+\gamma)^2=$ $=\alpha^2+\beta^2+\gamma^2+2\alpha\beta+2\beta\gamma+2\gamma\alpha$ με $\alpha=2x$, $\beta=3y$ και $\gamma=1$
Βήμα 3	$A = 4x^2 + 9y^2 + 1 + 12xy + 6y + 4x$	εκτελούμε τις πράξεις

• Na breite to anapturma $B = (x^2 - x + 1)^2$.

Βήμα 1	$\mathbf{B} = (\mathbf{x}^2 - \mathbf{x} + 1)^2$	αναγνωρίζουμε τη μορφή $(\alpha - \beta + \gamma)^2$
Βήμα 2	$B = (x^{2})^{2} + x^{2} + 1^{2} - 2x^{2} \cdot x -$ $-2x \cdot 1 + 2 \cdot 1 \cdot x^{2} =$ $= x^{4} + x^{2} + 1 - 2x^{3} - 2x + 2x^{2}$	εφαρμόζουμε την ταυτότητα $(\alpha - \beta + \gamma)^2 =$ $= \alpha^2 + \beta^2 + \gamma^2 - 2\alpha\beta - 2\beta\gamma + 2\gamma\alpha$ με $\alpha = x^2$, $\beta = x$ και $\gamma = 1$
Βήμα 3	$B = x^4 - 2x^3 + 3x^2 - 2x + 1$	εκτελούμε τις πράξεις

ΣΤ. Γινόμενο της μορφής: (x+a) (x+β)

Nα αποδείξετε ότι $(x+\alpha)\cdot(x+\beta) = x^2 + (\alpha+\beta)x + \alpha\beta$.

Απόδειξη

Eívai
$$(x + \alpha) \cdot (x + \beta) = x^2 + \beta x + \alpha x + \alpha \beta$$

= $x^2 + \alpha x + \beta x + \alpha \beta$
= $x^2 + (\alpha + \beta)x + \alpha \beta$

παραδείγματα:

• Να βρείτε το ανάπτυγμα $A = (x+2) \cdot (x+3)$.

Βήμα 1	$A = (x+2) \cdot (x+3)$	αναγνωρίζουμε τη μορφή $(x+\alpha)\cdot(x+\beta)$
Βήμα 2	$A = x^2 + (2+3)x + 2 \cdot 3$	εφαρμόζουμε την ταυτότητα $(x+\alpha)\cdot(x+\beta)=x^2+(\alpha+\beta)x+\alpha\beta$ με $\alpha=2$ και $\beta=3$
Βήμα 3	$A = x^2 + 5x + 6$	εκτελούμε τις πράξεις

• Eíva:
•
$$(x+5)\cdot(x-2) = x^2 + (5-2)x + 5\cdot(-2)$$

= $x^2 + 3x - 10$
• $(x-2)\cdot(x-5) = x^2 - 7x + 10$

Ζ. Εφαρμογές αξιοσημείωτων ταυτοτήτων

Να αποδείξετε ότι:

$$\alpha$$
. $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$

$$\gamma$$
. $\alpha^3 + \beta^3 = (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)$

$$\beta. \ \alpha^2 + \beta^2 = (\alpha - \beta)^2 + 2\alpha\beta$$

$$\delta. \quad \alpha^3 - \beta^3 = (\alpha - \beta)^3 + 3\alpha\beta(\alpha - \beta)$$

Απόδειξη

Είναι:

$$\alpha. (\alpha + \beta)^2 - 2\alpha\beta = \alpha^2 + 2\alpha\beta + \beta^2 - 2\alpha\beta = \alpha^2 + \beta^2$$

$$\beta. \ (\alpha - \beta)^2 + 2\alpha\beta = \alpha^2 - 2\alpha\beta + \beta^2 + 2\alpha\beta = \alpha^2 + \beta^2$$

$$\gamma$$
. $(\alpha+\beta)^3-3\alpha\beta(\alpha+\beta)=\alpha^3+3\alpha^2\beta+3\alpha\beta^2+\beta^3-3\alpha^2\beta-3\alpha\beta^2=\alpha^3+\beta^3$

$$\delta. (\alpha-\beta)^3 + 3\alpha\beta(\alpha-\beta) = \alpha^3 - 3\alpha^2\beta + 3\alpha\beta^2 - \beta^3 + 3\alpha^2\beta - 3\alpha\beta^2 = \alpha^3 - \beta^3$$

παραδείγματα:

• Av $\alpha + \beta = 3$ kai $\alpha\beta = 2$, va upologisete tic parastáseic:

$$\alpha^2 + \beta^2$$
 kai $\alpha^3 + \beta^3$

Λύση

Eíva:
$$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = 3^2 - 2 \cdot 2 = 9 - 4 = 5$$

•
$$\alpha^3 + \beta^3 = (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta) = 3^3 - 3 \cdot 2 \cdot 3 = 27 - 18 = 9$$

• An $\alpha - \beta = 5$ kai $\alpha \beta = 2$, na upologisete tic parastáseic:

$$\alpha^2 + \beta^2$$
 kai $\alpha^3 - \beta^3$

Λύση

Eivai:
$$\alpha^2 + \beta^2 = (\alpha - \beta)^2 + 2\alpha\beta = 5^2 + 2 \cdot 2 = 25 + 4 = 29$$

•
$$\alpha^3 - \beta^3 = (\alpha - \beta)^3 + 3\alpha\beta(\alpha - \beta) = 5^3 + 3 \cdot 2 \cdot 5 = 125 + 30 = 155$$

Σχόλιο

Με τη βοήθεια των παραπάνω ταυτοτήτων μπορούμε να εκφράσουμε:

- Το άθροισμα των τετραγώνων δύο αριθμών συναρτήσει του αθροίσματος ή της διαφοράς αυτών και του γινομένου τους.
- Το άθροισμα των κύβων δύο αριθμών συναρτήσει του αθροίσματος αυτών και του γινομένου τους.
- Τη διαφορά των κύβων δύο αριθμών συναρτήσει της διαφοράς τους και του γινομένου τους.

Ανακεφαλαίωση

Αξιοσημείωτες ταυτότητες

• Τετράγωνο αθροίσματος	1. $(\alpha+\beta)^2 = \alpha^2 + 2\alpha\beta + \beta^2$
• Τετράγωνο διαφοράς	2. $(\alpha-\beta)^2 = \alpha^2 - 2\alpha\beta + \beta^2$
• Κύβος αθροίσματος	3. $(\alpha + \beta)^3 = \alpha^3 + 3\alpha^2\beta + 3\alpha\beta^2 + \beta^3$
• Κύβος διαφοράς	4. $(\alpha-\beta)^3 = \alpha^3 - 3\alpha^2\beta + 3\alpha\beta^2 - \beta^3$
 Γινόμενο αθροίσματος επί διαφορά 	5. $(\alpha+\beta)\cdot(\alpha-\beta) = \alpha^2-\beta^2$
• Άθροισμα κύβων	6. $(\alpha+\beta)\cdot(\alpha^2-\alpha\beta+\beta^2)=\alpha^3+\beta^3$
• Διαφορά κύβων	7. $(\alpha-\beta)\cdot(\alpha^2+\alpha\beta+\beta^2)=\alpha^3-\beta^3$
• Τετράγωνο τριώνυμου	8. $(\alpha + \beta + \gamma)^2 = \alpha^2 + \beta^2 + \gamma^2 + 2\alpha\beta + 2\beta\gamma + 2\gamma\alpha$
	9. $(\alpha - \beta + \gamma)^2 = \alpha^2 + \beta^2 + \gamma^2 - 2\alpha\beta - 2\beta\gamma + 2\gamma\alpha$
 Γινόμενο της μορφής (x + α)(x + β) 	10. $(x+\alpha)\cdot(x+\beta) = x^2 + (\alpha+\beta)x + \alpha\beta$

Εφαρμογές αξιοσημείωτων ταυτοτήτων

• Άθροισμα τετραγώνων	$1. \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$
	$2. \alpha^2 + \beta^2 = (\alpha - \beta)^2 + 2\alpha\beta$
• Άθροισμα κύβων	3. $\alpha^3 + \beta^3 = (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)$
• Διαφορά κύβων	4. $\alpha^3 - \beta^3 = (\alpha - \beta)^3 + 3\alpha\beta(\alpha - \beta)$

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ

Α. Τετράγωνο αθροίσματος - διαφοράς

1. Να βρείτε τα αναπτύγματα:

$$(x+5)^2$$

$$\beta$$
. $(x-3)^2$

$$\gamma$$
. $(3x+2)^2$

$$\delta$$
. $(x^2-1)^2$

$$\epsilon. \left(2y^3 + \frac{1}{2}\right)^2$$

$$\sigma\tau.\left(\frac{x}{2}-\frac{1}{x}\right)^2$$

Λύση

α. Παρατηρούμε ότι το $(x+5)^2$ είναι της μορφής $(\alpha+\beta)^2$.

Οπότε εφαρμόζουμε την ταυτότητα

$$(\alpha + \beta)^2 = \alpha^2 + 2\alpha\beta + \beta^2$$
, yia $\alpha = x$ kai $\beta = 5$

Είναι

$$(x+5)^2 = x^2 + 2 \cdot x \cdot 5 + 5^2$$
$$= x^2 + 10x + 25$$

β. Παρατηρούμε ότι το $(x-3)^2$ είναι της μορφής $(\alpha-\beta)^2$.

Οπότε εφαρμόζουμε την ταυτότητα

$$(\alpha - \beta)^2 = \alpha^2 - 2\alpha\beta + \beta^2$$
, yia $\alpha = x$ kai $\beta = 3$

Είναι

$$(x-3)^2 = x^2 - 2 \cdot x \cdot 3 + 3^2$$
$$= x^2 - 6x + 9$$

 γ_* Εφαρμόζουμε την ταυτότητα $(\alpha+\beta)^2=\alpha^2+2\alpha\beta+\beta^2$, για $\alpha=3x$ και $\beta=2$.

Eívai
$$(3x+2)^2 = (3x)^2 + 2 \cdot 3x \cdot 2 + 2^2$$

= $9x^2 + 12x + 4$

δ.
$$(x^2-1)^2 = (x^2)^2 - 2 \cdot x^2 \cdot 1 + 1^2 = x^4 - 2x^2 + 1$$

$$\mathbf{E.} \quad \left(2y^3 + \frac{1}{2}\right)^2 = \left(2y^3\right)^2 + 2 \cdot 2y^3 \cdot \frac{1}{2} + \left(\frac{1}{2}\right)^2 = 4y^6 + 2y^3 + \frac{1}{4}$$

67.
$$\left(\frac{x}{2} - \frac{1}{x}\right)^2 = \left(\frac{x}{2}\right)^2 - 2 \cdot \frac{x}{2} \cdot \frac{1}{x} + \left(\frac{1}{x}\right)^2 = \frac{x^2}{4} - 1 + \frac{1}{x^2}$$

2. Να βρείτε τα αναπτύγματα:

$$(\sqrt{2} + \sqrt{5})^2$$

 β . $(2\sqrt{3}-1)^2$

Λύση

Είναι:

a.
$$(\sqrt{2} + \sqrt{5})^2 = (\sqrt{2})^2 + 2 \cdot \sqrt{2} \cdot \sqrt{5} + (\sqrt{5})^2$$

= $2 + 2\sqrt{2 \cdot 5} + 5$
= $7 + 2\sqrt{10}$

β.
$$(2\sqrt{3}-1)^2 = (2\sqrt{3})^2 - 2 \cdot 2\sqrt{3} \cdot 1 + 1^2$$

= $4(\sqrt{3})^2 - 4\sqrt{3} + 1$
= $4 \cdot 3 - 4\sqrt{3} + 1 = 12 - 4\sqrt{3} + 1$
= $13 - 4\sqrt{3}$

Αναπτύγματα των
$$(-\alpha-\beta)^2$$
 και $(-\alpha+\beta)^2$

Ισχύει ότι $(-x)^2 = x^2$. Οπότε:

•
$$(-\alpha-\beta)^2 = [-(\alpha+\beta)]^2 = (\alpha+\beta)^2$$

•
$$(-\alpha + \beta)^2 = [-(\alpha - \beta)]^2 = (\alpha - \beta)^2$$

Aρα: •
$$(-x-3)^2 = (x+3)^2 = x^2 + 6x + 9$$

•
$$(-x+1)^2 = (x-1)^2 = x^2 - 2x + 1$$

3. Να βρείτε τα αναπτύγματα:

$$\alpha \cdot (-3x-5)^2$$

$$\beta$$
. $(-x^2+1)^2$

$$\gamma. \quad (5-x)^2$$

Λύση

Είναι:

a.
$$(-3x-5)^2 = (3x+5)^2 = (3x)^2 + 2 \cdot 3x \cdot 5 + 5^2$$

= $9x^2 + 30x + 25$

$$\beta. \ (-x^2+1)^2 = (x^2-1)^2 = x^4-2x^2+1$$

$$\gamma$$
. $(5-x)^2 = (x-5)^2 = x^2 - 10x + 25$

4. Να κάνετε τις πράξεις:

$$\alpha$$
. $1-3x(2x-1)-(x-3)^2$

$$\beta$$
. $x-(x-1)(3x-2)-(3x-1)^2$

Λύση

Είναι:

a.
$$1-3x(2x-1)-(x-3)^2 = 1-6x^2 + 3x - (x^2 - 6x + 9)$$

= $1-6x^2 + 3x - x^2 + 6x - 9$
= $-7x^2 + 9x - 8$

β.
$$x - (x-1)(3x-2) - (3x-1)^2 = x - (3x^2 - 2x - 3x + 2) - [(3x)^2 - 2 \cdot 3x \cdot 1 + 1^2]$$

$$= x - (3x^2 - 5x + 2) - (9x^2 - 6x + 1)$$

$$= x - 3x^2 + 5x - 2 - 9x^2 + 6x - 1$$

$$= -12x^2 + 12x - 3$$

5. Να αποδείξετε ότι:
α.
$$(x-3y)^2-(3x-y)^2+8x^2=8y^2$$

β. $(x^2-4)\cdot(\alpha^2-1)+(x-2\alpha)^2=(\alpha x-2)^2$

Λύση

Είναι:

a.
$$(x-3y)^2 - (3x-y)^2 + 8x^2 = x^2 - 6xy + 9y^2 - (9x^2 - 6xy + y^2) + 8x^2$$

$$= x^2 - 6xy + 9y^2 - 9x^2 + 6xy - y^2 + 8x^2$$

$$= 8y^2$$

β. •
$$(x^2 - 4) \cdot (\alpha^2 - 1) + (x - 2\alpha)^2 = x^2\alpha^2 - x^2 - 4\alpha^2 + 4 + x^2 - 4\alpha x + 4\alpha^2$$

= $\alpha^2 x^2 - 4\alpha x + 4$

•
$$(\alpha x - 2)^2 = \alpha^2 x^2 - 4\alpha x + 4$$

Άρα η δοσμένη ισότητα ισχύει.

6. Να συμπληρώσετε την ισότητα $(3x \cdots)^2 = \dots - + 25$. Λύση

Τη δοσμένη ισότητα θα τη συμπληρώσουμε σύμφωνα με την ταυτότητα

$$(\alpha - \beta)^2 = \alpha^2 - 2\alpha\beta + \beta^2$$

Έχουμε: $\alpha = 3x$ και $\beta^2 = 25$, οπότε $\beta = 5$.

Άρα η ισότητα συμπληρώνεται ως εξής $(3x-5)^2 = 9x^2 - 30x + 25$.

Β. Κύβος αθροίσματος - διαφοράς

7. Να βρείτε τα αναπτύγματα:

$$\alpha \cdot (x+5)^3$$

$$\beta$$
. $(2x-1)^3$

$$\gamma$$
. $(3x^2-2)^3$

Λύση

α. Παρατηρούμε ότι το $(x+5)^3$ έχει τη μορφή $(\alpha+\beta)^3$.

Οπότε εφαρμόζουμε την ταυτότητα

$$(\alpha + \beta)^3 = \alpha^3 + 3\alpha^2\beta + 3\alpha\beta^2 + \beta^3 , \ \ \text{για} \ \ \alpha = x \ \ \ \text{και} \ \ \beta = 5 \ \ \ \text{και έχουμε}$$

$$(x+5)^3 = x^3 + 3x^2 \cdot 5 + 3x \cdot 5^2 + 5^3 = x^3 + 15x^2 + 75x + 125$$

β. Εφαρμόζουμε την ταυτότητα

$$(\alpha-\beta)^3 = \alpha^3 - 3\alpha^2\beta + 3\alpha\beta^2 - \beta^3 \quad \text{για} \quad \alpha = 2x \quad , \quad \beta = 1 \quad \text{και έχουμε}$$

$$(2x-1)^3 = (2x)^3 - 3(2x)^2 \cdot 1 + 3 \cdot 2x \cdot 1^2 - 1^3$$

$$= 8x^3 - 3 \cdot 4x^2 + 6x - 1$$

$$= 8x^3 - 12x^2 + 6x - 1$$

$$\gamma. \text{ Eival} \qquad (3x^2 - 2)^3 = (3x^2)^3 - 3 \cdot (3x^2)^2 \cdot 2 + 3 \cdot 3x^2 \cdot 2^2 - 2^3$$

$$= 27x^6 - 6 \cdot 9x^4 + 9x^2 \cdot 4 - 8$$

$$= 27x^6 - 54x^4 + 36x^2 - 8$$

Σχόλιο

Ισχύει ότι $(-x)^3 = -x^3$. Οπότε:

•
$$(-\alpha - \beta)^3 = [-(\alpha + \beta)]^3 = -(\alpha + \beta)^3$$

•
$$(-\alpha + \beta)^3 = (\beta - \alpha)^3$$

8. Να βρείτε τα αναπτύγματα:

$$\alpha \cdot (-x-4)^3$$

$$\beta$$
. $(-5+x)^3$

Λύση

Είναι:

$$a. (-x-4)^3 = -(x+4)^3 = -(x^3+3\cdot x^2\cdot 4+3\cdot x\cdot 4^2+4^3)$$
$$= -(x^3+12x^2+48x+64) = -x^3-12x^3-48x-64$$

β.
$$(-5+x)^3 = (x-5)^3 = x^3 - 3 \cdot x^2 \cdot 5 + 3 \cdot x \cdot 5^2 - 5^3 = x^3 - 15x^2 + 75x - 125$$

Γινόμενο αθροίσματος επί διαφορά Γ.

9. Να βρείτε τα αναπτύγματα:

$$\alpha$$
. $(x+1)\cdot(x-1)$

B.
$$(2x+7)\cdot(2x-7)$$

$$\delta$$
. $(x^2-4)\cdot(x^2+4)$

$$\varepsilon. \left(5x^3 + \frac{3y}{2}\right) \cdot \left(5x^3 - \frac{3y}{2}\right)$$

στ.
$$(11x^2y - 12ω^3) \cdot (11x^2y + 12ω^3)$$

Λύση

α. Παρατηρούμε ότι το γινόμενο $(x+1)\cdot(x-1)$ είναι της μορφής $(\alpha+\beta)\cdot(\alpha-\beta)$. Οπότε εφαρμόζουμε την ταυτότητα

$$(\alpha+\beta)\cdot(\alpha-\beta)=\alpha^2-\beta^2$$
 , gia $\alpha=x$ kai $\beta=1$

Eívai
$$(x+1) \cdot (x-1) = x^2 - 1^2$$

= $x^2 - 1$

β. Εφαρμόζουμε την ταυτότητα

$$(\alpha + \beta) \cdot (\alpha - \beta) = \alpha^2 - \beta^2$$
 yia $\alpha = 2x$ kai $\beta = 7$

Eivai
$$(2x+7)\cdot(2x-7) = (2x)^2 - 7^2$$

$$=4x^2-49$$

$$\gamma$$
. $(4x-9y) \cdot (4x+9y) = (4x)^2 - (9y)^2$
= $16x^2 - 81y^2$

$$\delta. (x^2 - 4)(x^2 + 4) = (x^2)^2 - 4^2$$
$$= x^4 - 16$$

$$\mathbf{\epsilon.} \quad \left(5x^3 + \frac{3y}{2}\right) \left(5x^3 - \frac{3y}{2}\right) = (5x^3)^2 - \left(\frac{3y}{2}\right)^2 = 25x^6 - \frac{9y^2}{4}$$

στ.
$$(11x^2y - 12ω^3)(11x^2y + 12ω^3) = (11x^2y)^2 - (12ω^3)^2$$

= $121x^4y^2 - 144ω^6$

10. Να βρείτε τα αναπτύγματα:

$$\alpha \cdot (x-3) \cdot (3+x)$$

$$\beta$$
. $(x-y)\cdot(-x-y)$

$$\gamma$$
. $(-x+2)\cdot(-x-2)$

Λύση

Είναι:

a.
$$(x-3) \cdot (3+x) = (x-3) \cdot (x+3)$$

= $x^2 - 3^2$
= $x^2 - 9$

$$β. (x-y) \cdot (-x-y) = (x-y) \cdot [-(x+y)]$$

$$= -(x-y) \cdot (x+y)$$

$$= -(x^2 - y^2)$$

$$= -x^2 + y^2$$

$$\gamma$$
. $(-x+2)\cdot(-x-2) = -(x-2)\cdot[-(x+2)]$
= $(x-2)\cdot(x+2)$
= x^2-4

11. Να κάνετε τις πράξεις:

$$a. (\sqrt{3} - \sqrt{2}) \cdot (\sqrt{3} + \sqrt{2})$$

$$\beta$$
. $(1-2\sqrt{3})\cdot(1+2\sqrt{3})$

$$\gamma \cdot \frac{1}{(2-\sqrt{3})(2+\sqrt{3})}$$

Λύση

Είναι:

a.
$$(\sqrt{3} - \sqrt{2}) \cdot (\sqrt{3} + \sqrt{2}) = (\sqrt{3})^2 - (\sqrt{2})^2$$

= 3 - 2 = 1

β.
$$(1-2\sqrt{3}) \cdot (1+2\sqrt{3}) = 1^2 - (2\sqrt{3})^2$$

= $1-4 \cdot 3 = -11$

$$\gamma \cdot \frac{1}{(2-\sqrt{3})(2+\sqrt{3})} = \frac{1}{2^2 - (\sqrt{3})^2}$$
$$= \frac{1}{4-3} = \frac{1}{1} = 1$$

Συζυγείς παραστάσεις

Είναι

$$\left(\sqrt{\alpha} - \sqrt{\beta}\right) \cdot \left(\sqrt{\alpha} + \sqrt{\beta}\right) = \left(\sqrt{\alpha}\right)^2 - \left(\sqrt{\beta}\right)^2 = \alpha - \beta \tag{1}$$

Τις παραστάσεις $\sqrt{\alpha}-\sqrt{\beta}$, $\sqrt{\alpha}+\sqrt{\beta}$ τις λέμε συζυγείς παραστάσεις και την καθεμιά από αυτές συζυγή της άλλης.

Για παράδειγμα οι συζυγείς παραστάσεις των:

$$\sqrt{3} - \sqrt{2}$$
, $3 + \sqrt{5}$, $2\sqrt{3} - 1$

είναι αντίστοιχα οι:

$$\sqrt{3} + \sqrt{2}$$
, $3 - \sqrt{5}$, $2\sqrt{3} + 1$

Την ισότητα (1) τη χρησιμοποιούμε για να μετατρέπουμε κλάσματα της μορφής $\frac{1}{\sqrt{\alpha}-\sqrt{\beta}} \quad \text{σε ισοδύναμα κλάσματα με ρητό παρονομαστή, πολλαπλασιάζοντας}$

αριθμητή και παρονομαστή με τη συζυγή παράσταση του παρονομαστή.

Δηλαδή

$$\frac{1}{\sqrt{\alpha}-\sqrt{\beta}} = \frac{\sqrt{\alpha}+\sqrt{\beta}}{(\sqrt{\alpha}-\sqrt{\beta})\cdot(\sqrt{\alpha}+\sqrt{\beta})} = \frac{\sqrt{\alpha}+\sqrt{\beta}}{(\sqrt{\alpha})^2-(\sqrt{\beta})^2} = \frac{\sqrt{\alpha}+\sqrt{\beta}}{\alpha-\beta}$$

 Να μετατρέψετε τα παρακάτω κλάσματα σε ισοδύναμα κλάσματα με ρητό παρονομαστή.

Λύση

[Πολλαπλασιάζουμε τους όρους κάθε κλάσματος με τη συζυγή παράσταση του παρονομαστή].

Έχουμε:

$$a. \frac{2}{3+\sqrt{5}} = \frac{2\cdot(3-\sqrt{5})}{(3+\sqrt{5})\cdot(3-\sqrt{5})} = \frac{2\cdot(3-\sqrt{5})}{3^2-(\sqrt{5})^2} = \frac{2\cdot(3-\sqrt{5})}{9-5}$$
$$= \frac{2\cdot(3-\sqrt{5})}{4} = \frac{3-\sqrt{5}}{2}$$

$$\beta. \frac{1}{1-2\sqrt{3}} = \frac{1+2\sqrt{3}}{\left(1-2\sqrt{3}\right)\cdot\left(1+2\sqrt{3}\right)} = \frac{1+2\sqrt{3}}{1^2-\left(2\sqrt{3}\right)^2} = \frac{1+2\sqrt{3}}{1-12} = \frac{1+2\sqrt{3}}{-11} = -\frac{2\sqrt{3}+1}{11}$$

13. Να βρείτε τα αναπτύγματα:

a.
$$(x-1)\cdot(x+1)\cdot(x^2+1)\cdot(x^4+1)$$

 β . $(x-2)^2\cdot(x+2)^2\cdot(x^2+4)^2$

Λύση

α. Πολλαπλασιάζουμε πρώτα το (x-1) με το (x+1) και το γινόμενο που βρίσκουμε το πολλαπλασιάζουμε με το (x^2+1) . Συνεχίζουμε με τον ίδιο τρόπο.

Είναι

$$(x-1)(x+1)(x^2+1)(x^4+1) = (x^2-1)(x^2+1)(x^4+1)$$
$$= (x^4-1)(x^4+1)$$
$$= x^8-1$$

β. Είναι

$$(x-2)^{2}(x+2)^{2}(x^{2}+4)^{2} = [(x-2)(x+2)]^{2}(x^{2}+4)^{2}$$

$$= (x^{2}-4)^{2}(x^{2}+4)^{2} = [(x^{2}-4)(x^{2}+4)]^{2}$$

$$= (x^{4}-16)^{2}$$

$$= x^{8}-32x^{4}+256$$

14. Δίνεται το πολυώνυμο

$$P(x) = (2x-1)^2 - 3(x-2)(x+2) + 4x - 13$$

Να βρείτε την τιμή της παράστασης $\,A = \sqrt{P(2017)}\,$.

Λύση

Είναι:

•
$$P(x) = (2x-1)^{2} - 3(x-2)(x+2) + 4x - 13$$
$$= 4x^{2} - 4x + 1 - 3(x^{2} - 4) + 4x - 13$$
$$= 4x^{2} - 4x + 1 - 3x^{2} + 12 + 4x - 13$$
$$= x^{2}$$

•
$$A = \sqrt{P(2017)} = \sqrt{2017^2} = 2017$$

Δ. Διαφορά κύβων - Άθροισμα κύβων

15. Να βρείτε τα αναπτύγματα:

$$\alpha$$
. $(x+3)\cdot(x^2-3x+9)$

$$\beta$$
. $(2y-1)\cdot(4y^2+2y+1)$

Λύση

α. Εφαρμόζουμε την ταυτότητα

$$(\alpha+\beta)\cdot(\alpha^2-\alpha\beta+\beta^2)=\alpha^3+\beta^3$$
 gia $\alpha=x$, $\beta=3$ kai écoume
$$(x+3)\cdot(x^2-3x+9)=(x+3)\cdot(x^2-x\cdot 3+3^2)$$

$$=x^3+3^3=x^3+27$$

β. Εφαρμόζουμε την ταυτότητα

$$(\alpha-\beta)\cdot(\alpha^2+\alpha\beta+\beta^2) = \alpha^3-\beta^3$$
 gia $\alpha=2y$, $\beta=1$ kai écoume
$$(2y-1)\cdot(4y^2+2y+1) = (2y-1)\cdot[(2y)^2+2y\cdot 1+1^2]$$

$$= (2y)^3-1^3=8y^3-1$$

Ε. Τετράγωνο τριωνύμου

16. Να βρείτε τα αναπτύγματα:

Λύση

α. Εφαρμόζουμε την ταυτότητα

$$(\alpha+\beta+\gamma)^2 = \alpha^2+\beta^2+\gamma^2+2\alpha\beta+2\beta\gamma+2\gamma\alpha$$

$$\gamma \text{ia } \alpha=3x \ , \ \beta=y \ \text{ kai } \gamma=2 \ \text{ kai écoume}$$

$$(3x+y+2)^2 = (3x)^2+y^2+2^2+2\cdot 3x\cdot y+2\cdot y\cdot 2+2\cdot 2\cdot 3x$$

$$= 9x^2+y^2+4+6xy+4y+12x$$

$$= 9x^2+y^2+6xy+12x+4y+4$$

β. Είναι

$$(x^{2} - 3x + 1)^{2} = (x^{2})^{2} + (3x)^{2} + 1^{2} - 2x^{2} \cdot 3x - 2 \cdot 3x \cdot 1 + 2 \cdot 1 \cdot x^{2}$$
$$= x^{4} + 9x^{2} + 1 - 6x^{3} - 6x + 2x^{2}$$
$$= x^{4} - 6x^{3} + 11x^{2} - 6x + 1$$

ΣΤ. Γινόμενο της μορφής: $(x+\alpha)$ $(x+\beta)$

17. Να κάνετε τις πράξεις:

$$\alpha$$
. $(x+4)\cdot(x-6)$

$$\beta$$
. $(x+3)\cdot(x+5)-(x-1)\cdot(x-6)$

Λύση

α. Εφαρμόζουμε την ταυτότητα

$$(x+\alpha)\cdot(x+\beta) = x^2 + (\alpha+\beta)x + \alpha\beta$$

$$για$$
 $α = 4$ $και$ $β = -6$

Άρα
$$(x+4)\cdot(x-6) = x^2 + (4-6)x + 4\cdot(-6)$$

= $x^2 - 2x - 24$

$$β. (x+3) \cdot (x+5) - (x-1) \cdot (x-6) = x^2 + 8x + 15 - (x^2 - 7x + 6)$$

$$= x^2 + 8x + 15 - x^2 + 7x - 6$$

$$= 15x + 9$$

Ζ. Εφαρμογές αξιοσημείωτων ταυτοτήτων

18. An $\alpha+\beta=-1$ kai $\alpha\beta=-2$, na upologisete tiz papastáseiz:

$$\alpha$$
. $\alpha^2 + \beta^2$

$$\beta$$
. $\alpha^3 + \beta^3$

$$\gamma$$
. $(\alpha - \beta)^2$

Λύση

α. Γνωρίζουμε ότι $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$.

Για $\alpha + \beta = -1$ και $\alpha\beta = -2$, έχουμε

$$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = (-1)^2 - 2 \cdot (-2) = 5$$

β. Γνωρίζουμε ότι

$$\alpha^3 + \beta^3 = (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)$$

Για $\alpha + \beta = -1$ και $\alpha\beta = -2$, έχουμε

$$\alpha^3 + \beta^3 = (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta) = (-1)^3 - 3\cdot(-2)\cdot(-1) = -7$$

γ. Είναι
$$(\alpha - \beta)^2 = \alpha^2 - 2\alpha\beta + \beta^2$$

= $\alpha^2 + \beta^2 - 2\alpha\beta$

$$=5-2\cdot(-2)=9$$
 (είναι $\alpha^2+\beta^2=5$ από το ερώτημα α .)

19. An $x-\frac{1}{x}=-2$, να υπολογίσετε τις παραστάσεις:

$$\alpha \cdot x^2 + \frac{1}{x^2}$$

$$\beta. \ \ x^3 - \frac{1}{x^3}$$

Λύση

α. Γνωρίζουμε ότι $\alpha^2 + \beta^2 = (\alpha - \beta)^2 + 2\alpha\beta$. Για $\alpha = x$ και $\beta = \frac{1}{x}$, έχουμε

$$x^{2} + \frac{1}{x^{2}} = x^{2} + \left(\frac{1}{x}\right)^{2} = \left(x - \frac{1}{x}\right)^{2} + 2x \cdot \frac{1}{x} = (-2)^{2} + 2 = 6$$

β. Γνωρίζουμε ότι $\alpha^3 - \beta^3 = (\alpha - \beta)^3 + 3\alpha\beta(\alpha - \beta)$.

Για $\alpha = x$ και $\beta = \frac{1}{x}$, έχουμε $x^3 - \frac{1}{x^3} = x^3 - \left(\frac{1}{x}\right)^3 = \left(x - \frac{1}{x}\right)^3 + 3x \cdot \frac{1}{x}\left(x - \frac{1}{x}\right) = (-2)^3 + 3(-2) = -14$

Η. Υπολογισμός αριθμητικών παραστάσεων με εφαρμογή των ταυτοτήτων

20. Να υπολογίσετε τις παραστάσεις:

$$\alpha. 99^2$$

β. 1002·998

Λύση

Είναι:

a.
$$99^2 = (100 - 1)^2 = 100^2 - 2 \cdot 100 \cdot 1 + 1 = 10000 - 200 + 1 = 9.801$$

β.
$$1002 \cdot 998 = (1000 + 2)(1000 - 2) = 1000^2 - 2^2 = 1.000.000 - 4 = 999.996$$

21. α. Να αποδείξετε ότι $(\alpha + 2)^2 - 4(\alpha + 1) = \alpha^2$.

β. Να υπολογίσετε την παράσταση $A = \sqrt{1002^2 - 4004}$.

Λύση

Είναι:

$$\alpha$$
. $(\alpha + 2)^2 - 4(\alpha + 1) = \alpha^2 + 4\alpha + 4 - 4\alpha - 4 = \alpha^2$

β.
$$A = \sqrt{1002^2 - 4004} = \sqrt{(1000 + 2)^2 - 4 \cdot 1001} = \sqrt{(1000 + 2)^2 - 4(1000 + 1)}$$

Σύμφωνα με την ισότητα του προηγούμενου ερωτήματος για $\,\alpha = \! 1000\,\,$ έχουμε

$$A = \sqrt{1000^2} = 1000$$

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ

Τετράγωνο αθροίσματος - διαφοράς

Να συμπληρώσετε τα παρακάτω κενά. 1.

$$\alpha$$
. $(\alpha + \beta)^2 = \dots$ β . $(\alpha - \beta)^2 = \dots$

2. Να συμπληρώσετε τα παρακάτω κενά.

$$\alpha$$
. $(x+3)^2 = \dots^2 + 2 \cdot \dots + \dots^2 = \dots$

$$\beta$$
. $(x-5)^2 = \dots^2 \dots 2 \cdot x \cdot 5 \dots 5^2 = \dots$

$$\gamma$$
. $(2x-7)^2 = (2x)^{11} - \dots + \dots^2 = \dots$

3. Να χαρακτηρίσετε τις παρακάτω ισότητες ως Σωστές (Σ) ή Λανθασμένες (Λ).

$$\alpha$$
. $(x+2)^2 = x^2 + 2^2$

 β . $(x-3)^2 = x^2 - 2x \cdot 3 - 3^2$

$$\gamma$$
. $(5x-3)^2 = 5x^2 - 2 \cdot 5x \cdot 3 + 3^2$

β.	
γ.	

Κύβος αθροίσματος - διαφοράς

4. Να συμπληρώσετε τα παρακάτω κενά.

a.
$$(\alpha + \beta)^3 = \dots$$
 B. $(\alpha - \beta)^3 = \dots$

$$\beta. \quad (\alpha - \beta)^3 = \dots$$

5. Να συμπληρώσετε τα παρακάτω κενά.

$$(x+2)^3 = \dots^3 + 3 \cdot \dots^2 \cdot \dots + 3 \cdot \dots \cdot \dots^2 + \dots^3 = \dots$$

$$\beta$$
. $(x-5)^3 = x^{-1} ... 3 5 ... 3 ... 5 ... 5 ... =$

Να χαρακτηρίσετε τις παρακάτω ισότητες ως Σωστές (Σ) ή Λανθασμένες (Λ). 6.

$$\alpha$$
. $(\alpha + \beta)^3 = \alpha^3 + \beta^3$

$$\beta. \quad (\alpha - \beta)^3 = \alpha^3 - 3\alpha\beta + \beta^3$$

$$\gamma$$
. $(\alpha - \beta)^3 = \alpha^3 + 3\alpha^2\beta + 3\alpha\beta^2 - \beta^3$

β. γ.

Γινόμενο αθροίσματος επί διαφορά Γ.

- 7. Να συμπληρώσετε τα παρακάτω κενά.
 - **a.** $(\alpha + \beta) \cdot (\alpha \beta) = \dots$ **b.** $(\alpha \beta) \cdot (\alpha + \beta) = \dots$
 - γ . $(\beta + \alpha) \cdot (\alpha \beta) = \dots$
- 8. Να συμπληρώσετε τα παρακάτω κενά.
 - α . $(x+10)\cdot(x-10) = \dots^2 \dots^2 = \dots$
 - β , $(x-8)\cdot(x+8) = \dots^2 \dots^2 = \dots$
 - v. $(x+1)\cdot(1-x) = \dots^2 \dots^2 = \dots$
 - δ . $(5x+7)\cdot(5x-7)=(\dots)^2-\dots^2=\dots$
- 9. Να χαρακτηρίσετε τις παρακάτω ισότητες ως Σωστές (Σ) ή Λανθασμένες (Λ).
 - α . $(\alpha + \beta) \cdot (\beta \alpha) = \alpha^2 \beta^2$
 - **B.** $(5-x)\cdot(x+5)=5^2-x^2$
 - y. $(3x-2)\cdot(3x+2)=3x^2-2^2$

α.	
β.	
γ.	

- 10. Να συμπληρώσετε τα παρακάτω κενά, ώστε να εκφράζουν τις εφαρμογές των αξιοσημείωτων ταυτοτήτων.
 - α . $\alpha^2 + \beta^2 = \dots = \dots$
 - β. $α^3 + β^3 = ...$ γ. $α^3 β^3 = ...$
- 11. Να συμπληρώσετε τον παρακάτω πίνακα αντιστοιχίζοντας σε κάθε παράσταση της στήλης Α, το ανάπτυγμά της από την στήλη Β.

Στήλη Α	Στήλη Β
α . $(\alpha - \beta)^2$	$1. \alpha^2 + 2\alpha\beta + \beta^2$
β . $(\alpha + \beta)^3$	$2. \alpha^3 + 3\alpha^2\beta + 3\alpha\beta^2 + \beta^3$
γ . $(\alpha - \beta) \cdot (\alpha + \beta)$	3. $\alpha^2 - \beta^2$
δ . $(\alpha + \beta)^2$	$4. \alpha^3 - 3\alpha^2\beta + 3\alpha\beta^2 - \beta^3$
ϵ . $(\alpha - \beta)^3$	$5. \ \alpha^2 - 2\alpha\beta + \beta^2$

α.	
β.	
γ.	
δ.	
8.	

ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΣΚΗΣΕΙΣ - ΠΡΟΒΛΗΜΑΤΑ

Α. Τετράγωνο αθροίσματος - διαφοράς

12. Να βρείτε τα αναπτύγματα:

$$\alpha$$
. $(x+y)^2$

$$\beta$$
. $(x+7)^2$

$$y. (y+1)^2$$

$$\delta$$
. $(x-5)^2$

E.
$$(y-1)^2$$

στ.
$$(\lambda - 11)^2$$

13. Να βρείτε τα αναπτύγματα

$$\alpha$$
. $(2x+3)^2$

$$\beta$$
. $(5x-1)^2$

$$\gamma$$
. $(7y-4)^2$

$$\delta$$
. $(2x + 3y)^2$

E.
$$(3xy - 5)^2$$

$$στ. (13αβ - 2)^2$$

14. Να βρείτε τα αναπτύγματα

$$\alpha$$
. $(x^2-3)^2$

$$\beta$$
. $(x^3 + 1)^2$

$$\gamma$$
. $(3x^2-2)^2$

$$\delta \cdot (xy^2 - 5x)^2$$

$$\epsilon. \quad (3\alpha^2\beta - 2\beta)^2$$

$$\sigma \tau$$
. $(5x^3y^2 - 3x^2y)^2$

15. Να βρείτε τα αναπτύγματα:

$$\alpha$$
. $\left(x-\frac{1}{2}\right)^2$

$$\beta$$
. $\left(\frac{\omega}{2}-1\right)^2$

$$\gamma$$
. $\left(2x-\frac{1}{3}\right)^2$

δ.
$$\left(5x^2 - \frac{1}{2}\right)^2$$

$$\epsilon. \quad \left(\frac{\lambda}{3} + \frac{3}{2}\right)^2$$

$$\mathbf{GT.} \left(\frac{2x}{3} - \frac{y^2}{2} \right)^2$$

$$\zeta$$
. $\left(x+\frac{1}{x}\right)^2$

$$\eta \cdot \left(x - \frac{1}{x}\right)^2$$

$$\theta. \quad \left(x^2 + \frac{2}{x^2}\right)^2$$

16. Να βρείτε τα αναπτύγματα:

$$\alpha$$
. $(5+\sqrt{2})^2$

β.
$$(\sqrt{7}-1)^2$$

$$\gamma$$
. $(3\sqrt{5}-2)^2$

8.
$$(3\sqrt{2}-2\sqrt{3})^2$$

E.
$$(\sqrt{6} + \sqrt{3})^2$$

στ.
$$(\sqrt{2}x - \sqrt{6})^2$$

17. Να βρείτε τα αναπτύγματα:

$$\alpha \cdot (-x-y)^2$$

$$\beta$$
. $(-2x-3)^2$

$$\gamma$$
. $(-5\alpha-\alpha^2)^2$

$$\delta \cdot (-x+1)^2$$

$$\epsilon \cdot (-3+x)^2$$

στ.
$$(7-x)^2$$

18. Να κάνετε τις πράξεις:

$$\alpha$$
. $5x - (x - 3)^2$

B.
$$(3x-2)^2-2x(x-1)$$

$$y$$
. $3x(x-2)-(x-1)^2$

$$\delta \cdot 3x^2 - (2x - 7)^2$$

$$\epsilon$$
. $(7x-2)^2 - (2x-3) \cdot (x-5)$

στ.
$$(2x-1)\cdot(x-2)-(3x-5)^2$$

19. Να κάνετε τις πράξεις:

$$\alpha$$
. $2x^3 - 3x(x-1)^2$

β.
$$1+2x(x-3)^2$$
 γ. $x-3x(2x-1)^2$

$$x - 3x(2x-1)^2$$

$$\delta_{\bullet} x^2 - (2x-1) \cdot (x+1)^2$$

$$x^5y^4 - (xy^2 - 1) \cdot (x^2y - 2)^2 + 3$$

20. Να αποδείζετε τις ταυτότητες:

$$\alpha. \quad (\alpha + \beta)^2 - (\alpha - \beta)^2 = 4\alpha\beta$$

B.
$$4\alpha(\alpha-1)-(2\alpha-1)^2=-1$$

$$(2x-1)^2 - 3x(x-1) + 3x = (x+1)^2$$

$$\gamma$$
. $(2x-1)^2 - 3x(x-1) + 3x = (x+1)^2$ δ . $(x^2-1) \cdot (\alpha^2-9) + (3x-\alpha)^2 = (\alpha x - 3)^2$

21. Να συμπληρώσετε τις ισότητες:

$$(x \cdots)^2 = \dots + \dots + 25$$

$$\beta$$
. $(\dots \dots 3)^2 = \omega^2 - \dots \dots$

$$\gamma$$
. $(...+...)^2 = 9x^2 \cdot \cdot \cdot 12xy \cdot \cdot \cdot ...$

$$\delta. (\dots 3\alpha)^2 = \dots -30x^2\alpha \dots \dots$$

Κύβος αθροίσματος - διαφοράς

Να βρείτε τα αναπτύγματα:

$$\alpha$$
. $(x+2)^3$

$$\beta$$
. $(x-3)^3$

$$y. (x-1)^3$$

$$\delta$$
. $(2x+1)^3$

$$(x^2-5)^3$$

στ.
$$\left(x-\frac{1}{3}\right)^3$$

$$(x^2 + 2x)^3$$

$$\eta \cdot (2x^2 - 1)^3$$

$$\theta. \quad (3\alpha^2\beta - 2\alpha\beta^3)^3$$

23. Να υπολογίσετε τις παραστάσεις:

$$\alpha$$
. $(\sqrt{2}+1)^3$

β.
$$(\sqrt{3} - \sqrt{2})^3$$

24. Να βρείτε τα αναπτύγματα:

$$\alpha \cdot (-x-2)^3$$

B.
$$(-3x-4)^3$$

$$\gamma \cdot (-1+x)^3$$

25. Να κάνετε τις πράξεις:

$$\alpha$$
. $x^3 - (x-1)^3 - 3x(x-2)$

B.
$$1-(3x-1)^3-(x-1)\cdot(3x-2)$$

$$\gamma$$
. $-10x^2 + 2(x+3)^3 - (2x-1)^2$

$$\delta$$
. $(x-2)^3 - x(x-2)(x-3)$

26. Να αποδείξετε τις ταυτότητες:

$$\alpha. (\alpha+\beta)^3 - (\alpha-\beta)^3 - 6\alpha^2\beta = 2\beta^3$$

B.
$$2\alpha(2\alpha-1)^2-(2\alpha-1)^3-4\alpha^2=1-4\alpha$$

Γινόμενο αθροίσματος επί διαφορά

- Να βρείτε τα αναπτύγματα:
 - α . $(x+y)\cdot(x-y)$
- **B.** $(x+3)\cdot(x-3)$ y. $(y-1)\cdot(y+1)$

- δ . $(\lambda + 7) \cdot (\lambda 7)$
- $\epsilon \cdot (9-x) \cdot (9+x)$
- $στ. (x+13) \cdot (x-13)$

- Να βρείτε τα αναπτύγματα:
 - a. $(5x-1)\cdot(5x+1)$
- **B.** $(7x-9)\cdot(7x+9)$ γ . $(4x+11)\cdot(4x-11)$
- δ. $(3x + 2y) \cdot (3x 2y)$ ε. $(9\lambda 5\mu) \cdot (9\lambda + 5\mu)$ στ. $(7x + 5y) \cdot (7x 5y)$

- Να βρείτε τα αναπτύγματα:
 - $(x^2-y^3)\cdot(x^2+y^3)$

B. $(3x^2-5)\cdot(3x^2+5)$

 γ . $(7x^3 + 9y) \cdot (7x^3 - 9y)$

- δ . $(3x^2y + 2y) \cdot (3x^2y 2y)$
- $(2xv^3 5xv^2) \cdot (2xv^3 + 5xv^2)$
- $\sigma\tau$. $(9x^2y^3 2xy) \cdot (9x^2y^3 + 2xy)$

Να βρείτε τα αναπτύγματα:

$$\alpha. \quad \left(x+\frac{3}{2}\right) \cdot \left(x-\frac{3}{2}\right)$$

$$\beta. \left(3x - \frac{2y}{5}\right) \cdot \left(3x + \frac{2y}{5}\right)$$

a.
$$\left(x + \frac{3}{2}\right) \cdot \left(x - \frac{3}{2}\right)$$
 b. $\left(3x - \frac{2y}{5}\right) \cdot \left(3x + \frac{2y}{5}\right)$ **7.** $\left(\frac{x^2}{3} - \frac{7y}{4}\right) \cdot \left(\frac{x^2}{3} + \frac{7y}{4}\right)$

- Να βρείτε τα αναπτύγματα:
 - α . $(x-5)\cdot(5+x)$
- β . $(3+x)\cdot(x-3)$
- γ . $(7x+1)\cdot(1-7x)$

- δ. $(-x+6)\cdot(x+6)$ ε. $(3x-1)\cdot(-1-3x)$ στ. $(-2x+5)\cdot(-2x-5)$
- Να βρείτε τα αναπτύγματα:
 - $a. (\sqrt{5} + \sqrt{3}) \cdot (\sqrt{5} \sqrt{3})$

B. $(2-\sqrt{3})\cdot(2+\sqrt{3})$

 $\sqrt{3\sqrt{2}-1}\cdot(3\sqrt{2}+1)$

- $\delta_{x} (\sqrt{5}x 3) \cdot (\sqrt{5}x + 3)$
- Να μετατρέψετε τα παρακάτω κλάσματα, που έχουν άρρητους παρονομαστές, σε ισοδύναμα κλάσματα με ρητούς παρονομαστές.
 - $\alpha. \frac{1}{\sqrt{3}-\sqrt{2}}$
- $\beta. \frac{3}{\sqrt{2}+1}$ $\gamma. \frac{17}{1-3\sqrt{2}}$
- $\delta. \frac{6}{3\sqrt{2}-\sqrt{6}}$

34. Να βρείτε τα αναπτύγματα:

$$\alpha$$
. $(x-2)\cdot(x+2)\cdot(x^2+4)$

β.
$$(3x-1)\cdot(3x+1)\cdot(9x^2+1)$$

$$\gamma$$
. $(2x^2-3)\cdot(2x^2+3)\cdot(4x^4+9)$ δ . $(\sqrt{x}-1)\cdot(\sqrt{x}+1)\cdot(x+1)$

δ.
$$(\sqrt{x}-1)\cdot(\sqrt{x}+1)\cdot(x+1)$$

$$\epsilon \cdot (x-1) \cdot (x+1) \cdot (x^2+1) \cdot (x^4+1)$$

E.
$$(x-1)\cdot(x+1)\cdot(x^2+1)\cdot(x^4+1)$$
 $\sigma\tau$. $(2x-1)\cdot(2x+1)\cdot(4x^2+1)\cdot(16x^4+1)$

35. Να υπολογίσετε τα γινόμενα:

$$(x-3)^2 \cdot (x+3)^2$$

$$(x-2)^3 \cdot (x+2)^3$$

a.
$$(x-3)^2 \cdot (x+3)^2$$
 b. $(x-2)^3 \cdot (x+2)^3$ **7.** $(x-1)^2 \cdot (x+1)^2 \cdot (x^2+1)^2$

36. Να κάνετε τις πράξεις:

$$\alpha$$
. $1-(x-1)\cdot(x+1)$

B.
$$5+(x-7)\cdot(x+7)$$

$$\gamma$$
. $1-3x\cdot(2x-1)-(3x-1)\cdot(3x+1)$

$$\gamma$$
. $1-3x\cdot(2x-1)-(3x-1)\cdot(3x+1)$ 6. $2x^2-(x-4)^2-(x-2)\cdot(2+x)$

E.
$$1-(x-5)\cdot(x+5)-(2x-1)^2$$
 or. $6y^2+2y(3y+1)\cdot(1-3y)$

$$στ. 6y^2 + 2y(3y+1) \cdot (1-3y)$$

$$\zeta$$
. $1-3x(2x-1)-(3-x)\cdot(-x-3)$

$$\zeta$$
. $1-3x(2x-1)-(3-x)\cdot(-x-3)$ η . $(3x+2)^2-(2x+5)\cdot(2x-5)-(2x-1)^2$

37. Δίνεται το πολυώνυμο $P(x) = (3x-2)^2 - 2(2x-1) \cdot (2x+1) - 4(1-3x) - 2$.

Να βρείτε την τιμή της παράστασης $A = \sqrt{P(1973)}$.

38. Να αποδείζετε ότι:

$$\alpha$$
. $(\alpha - \beta) \cdot (\alpha + \beta) - (2\alpha - \beta) \cdot (2\alpha + \beta) + 3\alpha^2 = 0$

$$\beta. \quad \alpha(1+\alpha)\cdot(\alpha-1)-(\alpha-1)^2-\alpha^3 = -1-\alpha(\alpha-1)$$

$$\gamma$$
. $(\alpha-1)^3 - (\alpha-1)(\alpha+1)^2 + 4\alpha(\alpha-1) = 0$

δ.
$$(\alpha-1)(\alpha+1)^3-2\alpha(\alpha-1)(\alpha+1)=\alpha^4-1$$

$$\epsilon. \quad (2\alpha^2 - 1)^3 - 2(2\alpha^3 - 1) \cdot (1 + 2\alpha^3) - 1 = -6\alpha^2(2\alpha^2 - 1)$$

Διαφορά κύβων - Άθροισμα κύβων

Να βρείτε τα αναπτύγματα:

$$\alpha$$
. $(x+2)\cdot(x^2-2x+4)$

$$\beta$$
. $(x-1)\cdot(x^2+x+1)$

$$\gamma$$
. $(3\omega + 1) \cdot (9\omega^2 - 3\omega + 1)$

$$\delta$$
. $(1-xy)\cdot(1+xy+x^2y^2)$

Τετράγωνο τριωνύμου

40. Να βρείτε τα αναπτύγματα:

$$(x^2 + x + 1)^2$$

$$\beta$$
. $(x^2 + 3x + 2)^2$

$$\gamma$$
. $(x+2y-z)^2$

$$\delta$$
. $(3x^2 - x + 1)^2$

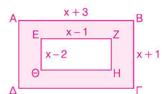
$$\epsilon. \quad (2\alpha - \beta - 3\gamma)^2$$

ΣΤ. Γινόμενο: $(x+\alpha)\cdot(x+\beta)$

 α. Να συμπληρώσετε το διπλανό πίνακα.

$(x+\alpha)\cdot(x+\beta)$	$x^2 + (\alpha + \beta)x + \alpha\beta$
$(x+1)\cdot(x+3)$	
$(x+3)\cdot(x-1)$	
$(x+3)\cdot (x-4)$	
$(x-2)\cdot (x-1)$	

β. Να εκφράσετε με ένα πολυώνυμο το εμβαδόν του σκιασμένου χωρίου στο διπλανό σχήμα.



42. Να κάνετε τις πράξεις:

$$\alpha$$
. $(x+3)\cdot(x+2)$

B.
$$(x-5)\cdot(x+3)$$

$$y$$
. $(x-2)\cdot(x-1)-(x-3)\cdot(x+2)$

$$\delta$$
. $(x^2-3)\cdot(x^2+2)$

Ζ. Εφαρμογές αξιοσημείωτων ταυτοτήτων

43. Av $\alpha + \beta = -2$ και $\alpha\beta = -3$, να υπολογίσετε τις παραστάσεις:

$$\alpha \cdot \alpha^2 + \beta^2$$

$$\beta$$
. $\alpha^3 + \beta^3$

$$\gamma \cdot (\alpha - \beta)^2$$

44. An x-y=3 kai xy=-2, na upologísete tic parastáseic:

$$\alpha$$
. $x^2 + y^2$

$$\beta$$
. $x^3 - y^3$

$$\gamma$$
. $(x+y)^2$

45. An $\alpha - \beta = 2$ kai $\alpha \beta = 3$, no upologisete the parastash

$$K = \alpha^2(\alpha+1) - \beta^2(\beta-1)$$

46. Aν $x + \frac{1}{x} = 3$, να υπολογίσετε τις παραστάσεις:

$$\alpha. \quad x^2 + \frac{1}{x^2}$$

$$\beta$$
. $x^3 + \frac{1}{x^3}$

$$\gamma$$
. $\left(x-\frac{1}{x}\right)^2$

47. Αν $x-\frac{1}{x}=1$, να υπολογίσετε τις παραστάσεις:

$$\alpha. x^2 + \frac{1}{x^2}$$

$$\beta$$
. $x^3 - \frac{1}{x^3}$

$$\gamma$$
. $\left(x+\frac{1}{x}\right)^2$

Η. Υπολογισμός αριθμητικών παραστάσεων με εφαρμογή των ταυτοτήτων

- 48. Να υπολογίσετε τις παραστάσεις με εφαρμογή κατάλληλων ταυτοτήτων.
 - α . 98^2

- β. 101·99
- **49.** α. Να κάνετε τις πράξεις $(x-4)^2 (x-2) \cdot (x-8)$.
 - **β.** Να υπολογίσετε την τιμή της παράστασης $A = 9996^2 9998 \cdot 9992$.
- **50.** α. Να δείξετε ότι $(v-2) \cdot (v+2) + 4 = v^2$.
 - **β.** Να υπολογίσετε την παράσταση $A = \sqrt{998 \cdot 1002 + 4}$.
- **51.** α. Να κάνετε τις πράξεις $\alpha(\alpha-2)-(\alpha-1)^2$.
 - **β.** Να υπολογίσετε την παράσταση $A = 2019 \cdot 2017 2018^2$.
- **52.** α. Να υπολογίσετε την παράσταση $(\sqrt{3} \sqrt{2})^2$.
 - β. Να δείξετε ότι $\sqrt{5-2\sqrt{6}} = \sqrt{3}-\sqrt{2}$.
- 53. Να υπολογίσετε τις παραστάσεις:
 - $(\sqrt{3}+2)^2$, $(\sqrt{3}-2)^2$

B. $\sqrt{7+4\sqrt{3}}+\sqrt{7-4\sqrt{3}}$

- 54. Να υπολογίσετε τις παραστάσεις:
 - $\alpha. \quad A = \sqrt{2 \sqrt{3}} \cdot \sqrt{2 + \sqrt{3}}$

B. B =
$$\sqrt{2} \cdot \sqrt{2\sqrt{3} - \sqrt{10}} \cdot \sqrt{2\sqrt{3} + \sqrt{10}}$$

$$\gamma. \quad \Gamma = \left(\sqrt{3 + \sqrt{5}} + \sqrt{3 - \sqrt{5}}\right)^2$$

- **55.** α. Να γράψετε την παράσταση $A = \sqrt{8} + \sqrt{16} \sqrt{200} + \sqrt{50}$ στη μορφή $\alpha + \beta \sqrt{2}$, όπου α , β ακέραιοι.
 - β. Να κάνετε τις πράξεις:

i.
$$(4+3\sqrt{2})^2$$

ii.
$$(4-3\sqrt{2})\cdot(4+3\sqrt{2})$$

γ. Να μετατρέψετε την παράσταση $\frac{4+3\sqrt{2}}{A}$ σε ένα κλάσμα με παρονομαστή ρητό αριθμό.

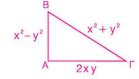
Θ. Προβλήματα

 Να υπολογίσετε την πλευρά α του ορθογωνίου τριγώνου του διπλανού σχήματος.

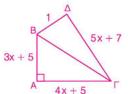
 $5 + \sqrt{3}$

Δ

- 57. Στο διπλανό ορθογώνιο να βρείτε:
 - α. Το εμβαδόν του
 - β. Το μήκος της διαγωνίου του ΑΓ.
- 58. Αν x > y και y > 0, να δείξετε ότι το τρίγωνο $AB\Gamma$ του διπλανού σχήματος είναι ορθογώνιο.



59. Αν το τρίγωνο ΑΒΓ του διπλανού σχήματος είναι ορθογώνιο, να αποδείξετε ότι και το τρίγωνο ΒΓΔ είναι ορθογώνιο.



Ι. Γενικές

- **60.** Αν οι αριθμοί x, y είναι αντίστροφοι, να υπολογίσετε την παράσταση $A = (x+2y)^2 (2x-y)^2 + 3x^2 3y^2$
- **61.** Να αποδείξετε ότι το πολυώνυμο $P(x) = (x-1)^2 (3x-2)^2 2x(5-4x)$ είναι σταθερό.
- 62. Aν $\alpha=x^2-yz$, $\beta=y^2-zx$ και $\gamma=z^2-xy$, να αποδείξετε ότι $\alpha^2-\beta\gamma=x(\alpha x+\beta y+\gamma z)$
- 63. Aν $P(x) = x^2 2x + 1$, να βρείτε τα πολυώνυμα $Q(x) = P(2x 3) \quad \text{και} \quad R(x) = P(x^2 1)$
- **64.** α. Να δείξετε ότι: $\alpha(\alpha+1)\cdot(\alpha+2)\cdot(\alpha+3)+1=(\alpha^2+3\alpha+1)^2$.
 - **β.** Να υπολογίσετε την παράσταση $A = \sqrt{1 + 100 \cdot 101 \cdot 102 \cdot 103}$.
- **65.** α. Να αποδείζετε ότι: $\left(x + \frac{2}{x}\right)^2 \left(x \frac{2}{x}\right)^2 = 8$.
 - **β.** Να υπολογίσετε την παράσταση $A = \left(2020 + \frac{1}{1010}\right)^2 \left(2020 \frac{1}{1010}\right)^2$.

- **66.** α. Να αποδείξετε ότι $\frac{\alpha^2 + \beta^2 (\alpha \beta)^2}{2} = \alpha \beta .$
 - **β.** Να υπολογίσετε το εμβαδόν ενός ορθογωνίου που έχει διαγώνιο $\delta = 5$ cm και οι διαστάσεις του α , β διαφέρουν κατά 1 cm .
- 67. Aν $x + y = 2\sqrt{2}$ και $x^2 + y^2 = 8$, να δείξετε ότι η παράσταση $\sqrt{x^{2020} + y^{2020}}$ είναι φυσικός αριθμός.
- **68.** An x+y=5 και $x^3+y^3=95$, να υπολογίσετε την τιμή των παραστάσεων $A=x^2+y^2-xy \quad \text{και} \quad B=(x-y)^2$
- **69.** An $\alpha + \frac{1}{\alpha} = 2\sqrt{2}$, na upologísete thi parástash $\alpha + \alpha^2 + \alpha^3 + \frac{1}{\alpha} + \frac{1}{\alpha^2} + \frac{1}{\alpha^3}$.
- 70. Έστω ότι ισχύει $x^2 3x + 1 = 0$. Να υπολογίσετε τις παραστάσεις:

$$\alpha$$
. $x + \frac{1}{x}$

$$\beta$$
. $x^2 + \frac{1}{x^2}$

$$\gamma$$
. $x^3 + \frac{1}{x^3}$

8.
$$x^4 + \frac{1}{x^4}$$

$$\epsilon$$
. $x^5 + \frac{1}{x^5}$

- **71.** An x>0 kai $x^2+\frac{1}{x^2}=14$, na upologísete thi parástash $x^5+\frac{1}{x^5}$.
- **72.** α. Να απλοποιήσετε την παράσταση $K = (x + y)^3 (x y)^3 6x^2y y^3$.
 - **β.** Να αποδείξετε ότι ο αριθμός $A = 200.004^3 199.996^3 24 \cdot 200.000^2 64$ είναι κύβος ακεραίου.

Διαγωνισμός Ε.Μ.Ε "Ο Ευκλείδης" 2008 - Α΄ Λυκείου

- 73. Δίνεται το πολυώνυμο $P(x) = x^3 + ax^2 + bx + c$, όπου a, b, c πραγματικοί αριθμοί.
 - α. Βρείτε το πολυώνυμο Q(x) = P(2x) 19P(-x).
 - **β.** Βρείτε το πολυώνυμο P(x) , αν ισχύει ότι $Q(x) = 3x(3x+2)^2$.

Διαγωνισμός Ε.Μ.Ε "Ο Ευκλείδης" 2015 – Γ΄ Γυμνασίου

ΣΥΝΔΥΑΣΤΙΚΕΣ ΑΣΚΗΣΕΙΣ

74. Δίνονται τα πολυώνυμα:

- $A(x) = (x+3)^2 3x(x+2)$
- B(x) = (x-1)(x+1)-(x-2)(x-3)
- $\Gamma(x) = (x-2)^3 x(x^2+12)$
- α. Να γράψετε τα πολυώνυμα A(x) , B(x) και $\Gamma(x)$ κατά τις φθίνουσες δυνάμεις του x .
- **β.** Να βρείτε τις τιμές του α , για τις οποίες ισχύει $A(-1)-\alpha=B(0)$.
- γ. Να μετατρέψετε το κλάσμα $\frac{2}{\mathrm{B}(2)-\sqrt{\mathrm{A}(1)}}$ σε ισοδύναμο με ρητό παρονομαστή.

75. Δίνονται τα πολυώνυμα:

- $A(x) = (3x-2)^2 (2x-1)(2x+1)$
- $B(x) = (2x-1)^3 + x(-3x-2)(3x-2)$
- α. Να δείξετε ότι $A(x) = 5x^2 12x + 5$ και $B(x) = -x^3 12x^2 + 10x 1$.
- **β.** Να βρείτε την αριθμητική τιμή του πολυωνύμου B(x) για $x = -\frac{3}{2}$.
- γ. Να δείξετε ότι

$$A(1-\sqrt{2}) = 8+2\sqrt{2}$$

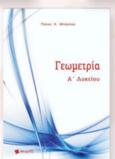
76. Δίνονται τα πολυώνυμα:

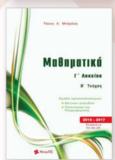
- $A(x) = (x-1)(x+1)(x^2+1)-(x^2-1)^2$
- $B(x) = 9x(3x^2 + 1) (3x 1)^3 1$
- α. Να αποδείξετε ότι $A(x) = 2x^2 2$.
- β. Να υπολογίσετε την τιμή της παράστασης

$$99 \cdot 101 \cdot 10001 - 9999^2$$

γ. Να δείξετε ότι

$$\sqrt{B(2017)} = 6051\sqrt{3}$$





Κυκποφορούν

Γυμνασίου

Μαθηματικά Α΄, Β΄, Γ΄
Άλγεβρα Α΄ Λυκείου
Έωμετρία Α΄ Λυκείου
Άλγεβρα Β΄ Λυκείου
Γεωμετρία Β΄ Λυκείου

ISBN: 978-618-82023-4-4

Λ.T. 21,70 €

Μαθηματικά Β΄ Λυκείου

Β΄ Λυκείου Θετικών Σπουδών Γ΄ Λυκείου Γενικής Παιδείας

🛮 Μαθηματικά Γ΄ Λυκείου Γενικής Παιδείας

Μαθηματικά Γ΄ Λυκείου Θετ. Σπουδών – Οικον. & Πληρ. Τεύχη Α΄ & Β΄