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1.1 History of Lanthanide Ion Luminescence

After the isolation of a sample of yttrium oxide from a new mineral by Johan Gadolin in
1794, several of the lanthanides, namely praseodymium and neodymium, as well as
cerium, lanthanum, terbium and erbium were isolated in different degrees of purity [1].
It was only after Kirchhoff and Bunsen introduced the spectroscope in 1859 as a means of
characterising elements that the remaining lanthanides were discovered and the already
known ones could be obtained in pure form [2]. Spark spectroscopy provided the means
to finally isolate in pure form the remaining lanthanides [3-5]. As will be discussed
below, the 4f valence orbitals are buried within the core of the ions, shielded from the
coordination environment by the filled 5s and 5p orbitals, and do not experience
significant coupling with the ligands. Therefore, the electronic levels of the ions can
be described in an analogous way to the atomic electronic levels with a Hamiltonian in
central field approximation with electrostatic Coulomb interactions, spin—orbit coupling
and finally crystal field and Zeeman effects added as perturbations. All these perturba-
tions lead to a lifting of the degeneracy of the electronic levels and transitions between
these split levels are experimentally observed [6]. These transitions, however, are
forbidden by the parity rule, as there is no change in parity between excited and ground
state. That the emission was nonetheless seen puzzled scientists for a long time [7]. Only
when Judd and Ofelt independently proposed their theory of induced electric dipole
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transitions [8,9] could the appearance of these transitions be satisfactorily explained. As
the transitions are forbidden, the direct excitation of the lanthanide ions is also not easily
accomplished, and this is why sensitised emission is a more appealing and energy
efficient way to promote lanthanide-centred emission. While the ability of the lanthanide
salts to emit light was key to their isolation in pure form, sensitised emission was first
described by S.I. Weissman only in 1942 [10]. This author realised that when complexes
of Eu(Ill) with salicylaldehyde and benzoylacetonato, as well as other related ligands,
were irradiated with light in the wavelength range in which the organic ligands absorb,
strong europium-characteristic red emission ensued. Weissman further observed that the
emission intensity was temperature and solvent dependent, as opposed to what is seen for
europium nitrate solutions [10]. After this seminal work, interest in sensitised lumines-
cence spread through the scientific community, as the potential application of lanthanides
for imaging and sensing was quickly recognised [11,12].

1.2 Electronic Configuration of the +III Oxidation State

1.2.1 The 4f Orbitals

The lanthanides’ position in the fourth period as the inner transition elements of the
periodic table indicates that the filling of the 4f valence orbitals commences with them.
The electronic configuration of the lanthanides is [Xe]4f'6s%, with notable exceptions for
lanthanum, cerium, gadolinium and lutetium, which have a [Xe]4f"_]5dl6s2 configura-
tion. Upon ionisation to the most common +III oxidation state, the configuration is
uniformly [Xe]4/"~'. La(III) therefore does not possess any felectrons, while Lu(III) has a
filled 4f orbital. While the 4f orbitals are the valence orbitals, they are shielded from the
coordination environment by the filled 5s and 5p orbitals, which are more spatially
extended, as shown in Fig. 1.1, which displays the radial charge density distribution for
Pr(IID) [13]. Therefore, lanthanides bind mostly through ionic interactions and the ligand
field perturbation upon the 4f orbitals is minimal. Nonetheless, as will be discussed
below, symmetry considerations imposed by the ligand field affect the emission spectra of
the lanthanide ions.

1.2.2 Energy Level Term Symbols

It is usual to describe the configurations of hydrogen-like atoms or ions, that is with only one
electron, in terms of the quantum numbers n, [, m;, s and m,. In polyelectronic atoms and
ions, exchange and pairing energies lead to different configurations, or microstates, with
different energies, which are described by new quantum numbers, the total orbital angular
momentum quantum number L and its projection along the z axis, the total magnetic orbital
angular momentum M;_and the total spin angular momentum quantum number S, often
indicated as the spin multiplicity, 25+1, as well as its projection along the z axis, the total
magnetic spin quantum number M. In the case of heavy elements, such as lanthanides,
coupling of the spin and angular momenta is seen, and an additional quantum number, J,
the spin—orbit coupling or Russell-Saunders quantum number, is commonly utilised. As
will be mentioned below, intermediate coupling for lanthanides is more correct, but the
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Figure 1.1 Radial charge density distribution of Pr(Ill). Reproduced from [13] with permission
from Elsevier

Russell-Saunders formalism is simple to use and will be carried through this chapter. Term
symbols with the format 28+17, which summarise the quantum number information, are
assigned to describe the individual microstates. For a polyelectronic atom or ion with i
electrons,

L=>l, My=-L,...,L

S=ZS,', S,'=1/2

and
J=L+S,L+S-1,...,IL-S5.

Term symbols can be obtained by determining the microstates, or allowed combinations
of all electrons described by quantum numbers, of the atom or ion under consideration
and methods to do it is can be found in textbooks [14,15]. Since multiple combinations of
electrons are allowed, and therefore many microstates are present, Hund’s rules are
followed for determination of the ground state. The ground state will have the largest spin
multiplicity and the largest orbital multiplicity corresponding to the largest value of L.
Finally, if S and L are equal for two states, the ground state will correspond to the largest
value of J, if the electron shell is more than half-filled, or an inverted multiplet and the
smallest value of J, if the orbital is less than half-filled, which is a regular multiplet. The
ground state term symbols for f* (n = number of electrons in the f shell) configurations are
shown in Table 1.1.
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Table 1.1 Ground state term symbols for f"

electronic configurations

Configuration

Term

014
/113
/112
£
Hf10
£

o/
f7

1SO
2F5/2/2F7/2
H, /P H,
g2/ s
°1,/ 1
°Hs,,/°Hys)
7F0/7F6

887/2

A complete diagram, showing the ground and excited states of all lanthanide ions in the
+III oxidation state with corresponding term symbols, is displayed in Fig. 1.2.

Table 1.2 summarises the most commonly observed emission transitions for the
emissive Ln(IIl) ions.

Table 1.2 Most common emissive f-f transitions of Ln>* [16-28]

Ln Transition A [nm]
Pr 1[)2 N 3F4 1000
1D2 o ;G4 1440
3D2 - °H,(J=4,5) 600, 690
Po = >H,(J = 4 - 6) 490, 545, 615, 640,
3P0_,3Fl(/=2_4) 700, 725
Nd 4F3/2 - 4'/(/ =9/2-13/2) 900, 1060, 1350
Sm 4(;5/2 N 6|—|/(/ =5/2-13/2) 560, 595, 640, 700, 775
4Gy, OF(/ = 1/2-9/2) 870, 887, 926, 1010, 1150
Eu Dy — "F(J = 0~-6) 580, 590, 615, 650, 720, 750, 820
Gd °P,, =55, 315
Th °D, - "F(J=6-0) 490, 540, 580, 620, 650, 660, 675
A 153, 340, 615, 695
s, = °H(J=15/2-9/2) PO DY
Ho °S, =1/ =8,7) 545, 750
5F5 N 5[/(/ — 8, 7) 650, 965
Er Sy, = () =15/2,13/2) 545, 850
(o = e 4 g?g 1540
LU =9/2,13/2) = "l5), '
Tm 'D, = F,,*H,, °F( = 3,2) 450, 650, 740, 775
1G4 - 3H6,3F4,3H5 470, 650/ 770
3H4 _)3H6 800
Yb 980

2F5/2 - ZF7/2
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Figure 1.2 Diagram of energy levels with corresponding term symbols for Ln(Ill) [16]

1.3 The Nature of the f-f Transitions

1.3.1 Hamiltonian in Central Field Approximation and Coulomb Interactions

The behaviour of an electron is described by the wave function y, which is a solution of the
Schrodinger equation 1.1.

(1.1)

This equation only has an exact solution for systems with one electron, but for polyelec-
tronic systems with N electrons, the solution can be approximated by considering that each

Hy =Ey
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electron is moving independently in a central spherically symmetric field U(r;)/e of the
averaged potentials of all other electrons [6]. The Hamiltonian Hcp, for this central field
approximation is shown in Equation 1.2.

h2
Hepa = Z {2 V2 + U(r,)] (1.2)
i=1

h is the reduced Planck constant, m the mass and the Laplace operator is given by
Equation 1.3.
? 0 &P
Vi=s S+t 1.3
Oxr  Oy?  Oz2 (13)

The Schrodinger equation can thus be written as shown in Equation 1.4.
N —h2
> { V2 + U(r,»)] Y= Ecp ¥ (1.4)
2m

i=1

In the central field approximation, solutions can be chosen such that the overall wave-
function and energy of the system are sums of wavefunctions and energies of one-electron
systems, as shown in Equation 1.5.

Y= Zy/i(ai) (1.5a)
N
Ecra =) E; (1.5b)

a' stands for the quantum numbers n, [ and m; which describe the state of the electron in the
central field. By introducing the polar coordinates r, 8 and ¢ instead of the Cartesian
coordinates x, y and z, one can separate each one-electron wave function into its radial R,;
and angular Y;,, components, as shown in Equation 1.6.

yi(a') = %Rn,(r VY 1, (0, ) (1.6)

Since R,; is a function of r only, it depends on the central field potential U(r;). A solution to
this wave function, shown in Equation 1.7, is approximated and depends on the form of the
central field.

Rnl(r) = -

(n—t-1) 2
(na0> 2n{n+l} ] n+l (,0) 1.7)

with p = r and ag = where ag is the Bohr radius and y the reduced mass. This

"2
42(32’

expression also includes the Laguerre polynomials Lﬁﬂfll(p) shown in Equation 1.8.
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{(n+ D)2
(n—1—1=k)\Q2I+ 1+ k)&

n—I—1 k
LY e)=> ., D

p* (1.8)

The angular wave functions, which are Laplacian spherical harmonics, on the other hand,
are similar to the one-electron wave function and can thus be solved. Their expression is
given in Equation 1.9.

QL+ 1)(I = |my))!

Yim (0, ) = (=1)" { 47l + my))! ]ZP?" (cos @)e™? (1.9)

P}" (cos ) are the Legendre functions shown in Equation 1.10.

(1 = cos? G)m]/z am!

P;”’ (cos 0) = T Teos g

(cos?6 — 1) (1.10)

Relativistic corrections to the Schrodinger equation lead to the introduction of a spin
function d(my, 0), where o is a spin coordinate and m;, is the magnetic spin quantum number,
to the one electron wave function in Equation 1.6, which then takes the shape shown in
Equation 1.11.

l//(l’l, lv mi, ms) = 5(17 n,m, mX)Rnl(r)Ylm/(ga ¢) (L.11)

Equation 1.5a can now be rewritten as Equation (1.12).
N .
¥=> y(d) (1.12)
i=1

While the two equations look similar, in Equation 1.12 o stands for the four quantum
numbers n, [, m; and m,, which describe the state of each i of the NV electrons. These
permutate to generate equally valid states following Pauli’s exclusion principle, to yield
anti-symmetric wave functions in the central field, which are solutions to the Schrodinger
equation (Equation 1.4).

The lack of perturbations to the Hamiltonian in the central field approximation results in
high degeneracy D (Equation 1.13) of the f electron configurations.

(4l +2)! 14!
N@I+2-N) - N(a=Ny ~ ori=3 (1.13)

The Hamiltonian for the perturbation introduced by the potential energy H,,, felt by all
electrons in the field of the nucleus corrected for the central spherically symmetric field is
given by Equation 1.14.

N Ze?
T

i=1

Hpo = - U(ri)} (1.14)
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Ze is the nuclear charge, r; the position coordinates of electron i and U(r;) the spherical
repulsive potential of all other electrons experienced by electron i moving independently in
the field of the nucleus.

The repulsive Coulomb energy between pairs of electrons is an important perturbation to
the central field approximation and its Hamiltonian Hc,,0mp 1S given by Equation 1.15.

N 2
e
H couiomp = g 7 (1.15)

i<j Y

e is the charge of the electron and r; is the distance between electrons 7 and j.
By applying Hcouoms to the wave function of the unperturbed system, it can be shown
that the electrostatic repulsion energy Egx of the system is given by Equation 1.16.

Egr= ) fiF* (1.16)

k=246
Here, k is an integer of values 2, 4 and 6, f} are the coefficients representing the angular part

of the wave function [29] and F* are the electrostatic Slater two-electron radial integrals
given by Equation 1.17.

F* = (4n)’e?

o—\8

« k

"
I @Rﬁ,(ri)kj / (rj)rizr}dr,-drj (1.17)
0

r< is the smaller and r., the larger of the values of r; and r;. Fy instead of the Slater integrals
are often indicated, for which:

F, = F?/225

Fy=F*/1089

Fe = F%/7361.64

In the case of hydrogenic wave functions the following relationships are valid [30].
Fs=0.145F, F¢=0.0164 F;

These show that the values of F; decrease as k increases. Values of F, for the configurations
f? to f'? are tabulated in Table 1.3 and show that they increase with increasing atomic
number, as the inter-electronic repulsion is expected to increase.

The f; angular coefficients are hydrogen-like and can be determined from

_ Q@I+ D =lmb! @1+ 1) = Im])!

T
P"(cos 0;)}*P{(cos 6;)sin 6,d6;
20+ 2+ ]! L{ 1" (cos )} Py(cos G)sin

(1.18)

X J' [P} (cos 6;))P&(cos 0;)sin 6,d0);
0

As above, P}", P;" and P’(‘, are Legendre polynomials.
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Table 1.3 Comparison of the average magnitude of perturbations for transition metal and
lanthanide ions in cm™" [13]

Valence configuration Hcoutomb H,_, Hr

3dV 70000 500 15000
4gN 50000 1000 20000
5dN 20000 2000 25000
4 70000 1500 500
5N 50000 2500 2000

In addition to the Coulomb interactions of electron—electron repulsion and electron—
nucleus attraction, further perturbations influence the energy levels of the lanthanide ions,
such as the coupling of the spin and angular momenta, commonly designated spin—orbit
coupling, the crystal field or Stark effect, and the interaction with a magnetic field or Zeeman
effect, which will be described in the following sections.

As illustrated in Fig. 1.3, by comparison to electron—electron repulsion, which leads to
energy splits on the order of 10*cm™, and spin—orbit coupling, with splits on the order of
10*cm™", the crystal field and Zeeman effects are small perturbations, resulting in energy
level splitting on the order of 10*cm™" at the most [13]. The magnitude of these data
compared to the d metals is shown comparatively in Table 1.4. In the case of transition
metals, the crystal field splitting dominates the spin—orbit coupling. However, for lanthanide
ions, the crystal field splitting is almost negligible. The spin—orbit coupling is of increasing

A
E [arb.un.]
Free ion e-e repulsion Spin-orbit coupling  Crystal field splitting  Magnetic field splitting
Hoor Coulomb interactions B levels Stark M, levels Zeeman M, levels
254 terms H,q H; H,
Hfuu.'umb
aftsal
lJFH-‘2

{ -

’ _ ~11/24
/ Faps W
1G5 LAY .

l/ /, & ~9/24
I “Friz %
;o iz E
! ;7 7 - 7

’ ,// , o ~7f2

i -, 5/3
7 e - % 3/2
Y - oF ~5/22 2 12
I oF & M = $1/2 ______'J”_
aF ! AT -——--—--~ - = —-—— z === +102
L-" - Faz \r3/2i
Y
RS H
N—

Figure 1.3  Effect of the perturbations [Coulomb (Hcoulomb), Spin—orbit (Hs.,), crystal field (H),
and magnetic field (Hz)] on the electron configuration of an arbitrary Ln(lll) Kramers” ion. Energy
units are arbitrary and not to scale. A is described in Section 3.2



3GCHO1

09/11/2014 13:43:47  Page 10

10  Luminescence of Lanthanide lons in Coordination Compounds and Nanomaterials

Table 1.4 Spin—orbit radial integral ¢, spin-orbit coupling constant A and F, values for the
Ln’*,, ions [25-28,31]

N ¢, lem™ Alem™"2 F, [cm™"1P
f! 625 625

£ 740 370 305
£ 884 295 321
* 1022 250 338
I 1157 231 364
e 1326 221 369
I 1450 0 384
8 1709 -285 401
f 1932 -386 407
1o 2141 —-535 419
il 2380 -793 440
2 2628 -1314 461
3 2870 —2880 444¢
af' as Ce:LaCl; [32] and f'* as Yb;GasOy, [33].

b16]

“[30]

importance for the heavier elements. However, in the case of the lanthanides, it is still
approximately an order of magnitude smaller than the Coulomb interactions and one order
of magnitude larger than the crystal field splitting; therefore an intermediate coupling
scheme, in which j-j in addition to Russell-Saunders coupling is also important, is more
correct. Nonetheless, as mentioned above, the latter formalism is utilised due to its
simplicity.

1.3.2 Spin-Orbit Coupling

The spin and angular momenta of the individual electrons couple with each other and this
coupling is increasingly important with atomic number. The Hamiltonian H,_, that describes
this perturbation is given in Equation 1.19.

N
Hyep=> &ri)(si- 1) (1.19)
i=1

r; is the position coordinate of electron i, and s; and /; are its spin and angular momentum
quantum numbers. &(r;), the single electron spin—orbit coupling constant, is given by
Equation 1.20.

W dU(r;)
2m2c?r; dr;

&(ry) = (1.20)

In this equation, ¢ is the speed of light in a vacuum and / is the reduced Planck constant. &(r;)
is related to the spin—orbit radial integral {,; by equation 1.21.
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Figure 1.4 The energies and splitting of the *I level for the f* and f'" configurations as a function
of the ratio ¢,/F,. The energy levels for the ratios —5.7 for Er(lll) and 2.6 for Nd(Ill) are indicated
by the dashed vertical lines. Adapted with permission from [16]. Interscience Publishers:
New York, 1968

Lu = JRﬁzé(r)dr (1.21)
0
and to the many electron spin—orbit coupling constant A by Equation 1.22, for S # 0.
£(r)
A=+ 1.22
55 (1.22)

Values of ¢,; and A for the hydrated Ln>* jons are summarised in Table 1.4, with 1 positive
for a more than half-filled shell and negative for a less than half-filled shell. It can be seen
that £,; increases with increasing number of f electrons, which corresponds to a higher
atomic number Z and a stronger spin—orbit interaction, as expected.

H,._, will permit coupling of 25*!L states for AS <1 and AL < 1. This effect is shown in
Fig. 1.4, in which the energy splitting of the I level due to spin—orbit coupling is shown as a
function of the ratio ,,;/ F,. The increased curvature of the levels shows the increasing spin—
orbit coupling. The energy levels of the reverse multiplet of Er(IIl) and of the multiplet of
Nd(II) are indicated by the vertical dashed lines.

The calculated compositions of the 4 multiplet levels of Nd(III) and of Er(Il) are given
below.

Nd( Er(I11)

(y),| = =0.166[*H] + 0.984[*1] (*I,5,| = 0.982[*1] - 0.186[ K]

(*I,1 /5] = 0.995[1] (*I3)5| =0.995[1]

(4113/2\ =—-0.993[*I] (41”/2 | =0.133[*G] - 0.129[*H] + 0.442[*H'] + 0.875[*I]

(*15),| = 0.993[*1]+0.118[’K] (*I,),| = —0.416[*F] - 0.342[*G] +0.276[*G'] - 0.219[’H]
+0.438[>H'] + 0.627[*1]
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Here, (‘I J‘ is the wave function of the spin—orbit perturbed state and [*I] is the wave
function of the unperturbed state; a state indicated by ’ is a state with the same L and S but
higher energy. Er(Il), the heavier lanthanide ion, experiences a larger spin—orbit coupling,
as can be seen from the graph as well as composition of the levels above. It can further be
inferred that spin—orbit coupling leads to a splitting of the levels into terms with different J
values. Diagonalisation of the energy matrix <l"aLSJ ’Ziéj(ri)s,-l,-’l”a’L’S’J’> allows esti-
mation of the energies of the split terms (Equation 1.23).

(I"aLST |3 &r)sii | "a L'S Ty = (=1)"9¢,0 /21 + 1)1 + 1)5,7
L S J
X { X }<l"aLs}|v“y|l"a’L’S'>

S/ Lr

(1.23)

o;; are the Kronecker delta symbols, for which 6;; =0 fori+j and 6;;=1 for i =j. a stands for
all additional quantum numbers which describe the initial and final states of /. The doubly
reduced matrix elements (I"aLS||V'!||I"a’L'S"), containing the spin—orbit operator V'', are
tabulated [34]. The term between curly brackets is the six-j symbol, which describes the
coupling of three momenta, in this case L, S and J. Online calculators are available to
determine these, or they are tabulated [35]. From the 6-j symbol selection rules arise, as it is
only non-zero when:

AS=0,+1 AL=0,+l
S+S>1 L+L>1

AJ=0

The energy of each term with respect to the barycentre of the parent term 25*!L can be
approximated by Equation 1.24.

Ej="%[JJ +1)=LIL+1) =SS+ 1)] (1.24)

Using this equation, it is possible to estimate that the *H 5 energy level of Pr** (4f%) will be
located approximately 370 cm™" or —1/ below the barycentre of the *H level, while the 3H 6
will be 64 or 2220cm™" above and the *H 4 level =54 or 1850 cm™! below [16]. From
Equation 1.24 it can further be concluded that the energy gap AE between two adjacent
levels with J/=J+ 1 is approximated by Landé’s interval rule (see also Fig. 1.3), given in
Equation 1.25.

AE = J' (1.25)

Landé’s interval rule is only strictly obeyed in the case of strong LS coupling and is only
approximated in lanthanides, where intermediate coupling, consisting of interaction of
levels with the same J but different L and S, is more correct. As a consequence, the
magnitude of the interval AE determined through Equation 1.25 is usually more accurate for
the lower energy levels of the lighter lanthanides. Nonetheless, a good approximation
between the experimentally observed gaps and the gaps calculated by Landé’s rule is
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usually seen, especially for ground-state multiplets. In the case of Pr'* the free ion energy
levels for 3H 4 H s and H ¢ are located at 0, 2152 and 4389 cm™ ! respectively [16], leading
to AE values of 2152 and 2237 cm™! between J=4 and 5 and J =5 and 6, which reasonably
approximate the values of 1850 and 2220 cm™" obtained through Equation 1.25.

1.3.3 Crystal Field or Stark Effects

When lanthanide ions are in inorganic lattices or compounds in general, in addition to the
Coulomb interactions and the spin—orbit coupling, each electron i also feels the effect of
the crystal field generated by the ligands surrounding the metal ion, in analogy to the
effect first described by Stark of an electric field on the lines of the hydrogen
spectrum [36]. This perturbation lifts the 2/4 1 degeneracy and generates new levels
with M; quantum numbers. Since a potential is generated by the electrons of the N
ligands, which is felt by the electrons of the lanthanide ions, the Hamiltonian can be
defined by Equation 1.26.

N

Hy=—-e» V() (1.26)
e is the elementary charge, V(r;) is the potential felt by electron i and r; its position.
Following the same reasoning utilised to derive Equations 1.6 and 1.12 one can express the

Hamiltonian as a function of the crystal field parameters B’;, which are related to the
spherical harmonics Y’;, as shown in Equation 1.27 [37].

Hy=Y_ (B’;)(C’;)i (1.27)

ik

The relationships between B’; and Y’; are shown in Equation 1.28.

k ZLé'z
Rar)rdr 2k F10 Z REH
ZL€2
nl(r)rkdr . Z e (1.28)
L
*d dm Y, Z1e”
Ry(r)rdry |5 ——Tm ZRIEH

L are the ligands responsible for the crystal field at a distance R;, Z their charge and e the
elementary charge. Often, instead of BX, the equivalent structural parameters A{ are utilised
as shown below.

Ok‘

&
|
0%8 0%8 o%s

k
Bq

B, = ax A}(r") (1.29)
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Table 1.5  Expectation values (r*) in a.u. [38]

() () () () () (r*)

Ce’* 0.97 1.17 1.73 3.08 6.44 15.55
Pt 0.93 1.08 1.55 2.65 5.36 12.53
Nd** 0.90 1.01 1.39 2.31 4.53 10.31
Sm?* 0.84 0.89 1.15 1.81 3.38 7.32
Eu*t 0.82 0.84 1.06 1.62 2.96 6.28
Gd** 0.79 0.79 0.98 1.46 2.61 5.45
Tb** 0.77 0.75 0.91 1.33 2.33 4.76
Dy3+ 0.75 0.71 0.84 1.21 2.08 4.19
Ho** 0.74 0.68 0.79 1.11 1.87 3.71
Er’t 0.72 0.65 0.74 1.02 1.69 3.31
Tm’* 0.70 0.62 0.69 0.94 1.54 2.97
Yb3* 0.69 0.60 0.65 0.87 1.40 2.67

a is a constant for each B’; and A pair [29], and <rk> represents the average or expectation
value of rk, where r is the nucleus—electron distance of the lanthanide ion, given by

@k>=ljlﬁxﬁﬁdr (1.30)

Tabulated values of (r*) for all Ln’" are summarised in Table 1.5.
(C’;)i are the related tensor operators, which transform as the spherical harmonics and
are given by

¥4
2k + 1

(Cyli = 0 (1.31)

1.3.4 The Crystal Field Parameters B’; and Symmetry

The integer k runs in the range 0-7 and the parameters containing even values of k are
responsible for the crystal field splitting, while those with odd values influence the intensity
of the induced electronic dipole transitions (see Section 1.3.10 for more details) [8,9]. ¢ is
also an integer and its values depend on the symmetry of the crystal field and the magnitude
of k, since |g| < k. The possible combinations of k and ¢ for the crystal field parameters are
given in Table 1.6 and the symmetry elements contained in the crystal field parameters
are summarised in Table 1.7.

The B8 coefficient is notably absent from these tables; since it is spherically symmetric,
it acts equally on all /N configurations. In energy level calculations it can therefore be
incorporated into all spherically symmetric interactions and does not need to be
considered individually.
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Table 1.6 Values of q allowed as a function of the symmetry elements of the crystal field [30]

Symmetry element present Values of q allowed

C,, (coincident with main axis) |g| <k, but is integer of n

o (xy-plane) Odd k= q odd or g#zero
Even k= g even

o, (xz-plane) No imaginary terms

i (inversion center) k even

G Odd k= g+zero

Odd k + |g| = no real terms
Even k+ |g| = no imaginary terms
S, (coincident with main axis) Odd k= g+zero
Odd k +|q| = g#n-fold
Even k+|q| = g#2x+1)n/2 x=0,1,2, . ..)

Table 1.7 Symmetry elements of the crystal field parameters Bs [30]

q 0 1 2 3 4 5 6 7
Bg7 Coo/ Oy Op, Oy
Bé Coo/ i/ C2// Oy, i/ C2/ i/ /2/
54, Oh C2 Op, O\
BZ Coo/ Oy Ohp, Oy CZ/ Oy, 54 C3/ Ohp, Oy
Bg Coo/ i/ C’Z/ Oy, i/ CZ/ i/ ,2/ C3/ i/ C’z/ C4/ i/ C’2/
!
Sa, o1, 2 Oh, Oy oy, S6 Op Oy, 54
Bg Co 0y on 6y Cy 04 514 C3,0n 0, Cy o0y Cs, on
oy
. . . , . . / : ; !
Bg COO/ 1, ,2/ Oy, I CZ/ ! 27 C3/ ! ,2/ C4/ I 27 CS/ 1 Cb/ 1 27
! U
54/ Op Cz Op, Oy oy, 56 Oh, Oy, 54 Czr Oy Op, Oy, 56
B, Cy oy on oy Cy o048 G op 0, Cyoy Cs, on Ce 0y G, on
o\ Oy
B! Oh, Od
q !
2
Biqz Od, i CZ/ i/ Oh,
Od
Bg Oh, Od, CZ/ ,2/ C3/ C’z/
!
2 oa S4 Oh, Od
B’; od, 1 Cy, i, on, C3, i, 64, Ca, i, 6p, G,
o4 56 54
! ! ! !
B;qs Oh, Od, CZ/ 27 C3/ 27 C4/ C2/ od CS/ 27
!
2 G, Sa Oh, Od Oh, Od
BY oa i Cy iy on Cs 0, 69 Cy i, 0p 04 Cs 0,04 Ce i, 0op 04
Ood 56 54 56
Bg Oh, Od, CZ/ /2/ C3/ C/Z/ C4/ C/Z/ Od CS/ C,Z/ C6/ Clz C7/ C,Z/

2 O S4 Oh, Od Oh Oy Oh 04
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The expression for H ., varies depending on the symmetry of the crystal field, as shown by
the information in Tables 1.3 and 1.4. For example, if the metal ion is in a site of C,, symmetry,
which includes two mirror planes and one C, axis, the expression for H.r becomes:

Hy= Y B{Ct+ > B5(C5+CY,)+ ) Bi(Ch+Ch) +BY(Co+Co%) (1.32)
k=246 k=246 k=46

Complete expressions for the summations for symmetry point groups of interest in
coordination chemistry can be found for example in Reference [30].

Further discussion of the crystal field perturbation and crystal field parameters will be
continued in Section 1.3.7.

As stated, the crystal field lifts the degeneracy of the J levels. However, in the case of
Kramers’ ions, which have an odd number of electrons and for which therefore J is half-
integer, the degeneracy is not completely removed and each sub-level is two-fold degenerate
and therefore a Kramers’ doublet [39]. Nonetheless, the lifting of the degeneracy is related
to the symmetry around the metal ion, and the number of new M; sub-levels as a function
of symmetry is summarised in Table 1.8.

In the case of the Eu(Ill) ion, where ground and excited state manifolds are well-
separated, this direct dependence of the number of M levels on the crystal field symmetry is
often utilised to determine the point group symmetry of the metal ion in a complex or solid
state material from the emission spectra. This method of descending symmetry is performed
with the help of a diagram such as the one shown in Fig. 1.5 [41]. A similar analysis can also
be performed on the basis of absorption spectra.

By using the reasoning above, the splitting of the 4f° configuration of Eu’* in O,
symmetry will be as shown in Fig. 1.6.

Table 1.8 Number of new M sub-levels for a parent | term split by the crystal field in a given
group symmetry [13,40]

Symmetry Integer /

o 1 2 3 4 5 6
Icosahedral 1h T 1 1 2 2 3 4
CubicOn, O, Ty, Tp, T 1 1T 2 3 4 4 6
Hexagonal Dep, Do, Cov, Con D3n, Capy D3g, D3, Cs1, S, C3 1 2 3 5 6 7 9
Pentagonal Dsp, Csp, Cs,, Cs, Ds 1 2 3 4 5 7 8
Tetragona| D4h, D4, C4v, C4/7, C4, Dzd, 54 1 2 4 5 7 8 10
Low Dy, Ds, Gy, Cop, Gy, G, S5, G 1T 3 5 7 9 11 13

Half-integer /
1/2 3/2 5/2 7/2 9/2 11/2 13/2 15/2 17/2

Cubic 1 1 2 3 3 4 5 6 6
Other symmetries 1 2 3 4 5 6 7 8 9
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Figure 1.6 Stark levels (energies not to scale) with corresponding symmetry labels for Fu* in

Oy, symmetry
The symmetries of the individual Stark levels indicated in Fig. 1.6 can be determined as
shown in Section 1.3.9 and a complete list of the Stark level symmetries for all point groups

can be found in Reference [30].
1.3.5 Energies of Crystal Field Split Terms
Estimation of the crystal field energy levels occurs through diagonalisation of the Hamil-
tonian matrix in Equation 1.33.
<l//l”SLJM, |Hcf |’//l"S'L'J'M,/> (1.33)
After substituting Equation 1.26 into Equation 1.33, it can be shown that the matrix
elements are described by Equation 1.34 [29,42].
WZ”SLJMJ’> _ (_1)2J—MJ+S+L+k+37(2 J+1)

>ACH;
3 kK 3 J J J k
L LS <V/1"SL||UkHl/’1"5L>
(1.34)

X
0 0 0 -M;

k J

Zk.qB]; <1//1"SLIM,
qg My
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The terms in parentheses are 3-j symbols and the term in braces is a 6-j symbol. The first
3-j symbol indicates the coupling of the angular momenta / =3 between final and initial
states, the second 3-j and the 6-j symbol denote the coupling of two, J and M, and three,
J, L and S, angular momenta, respectively. These symbols are tabulated in [35] or can be
calculated in Mathematica [43] or by using several calculators available online. While the
general formulas for the symbols are complicated, it can be shown that for the first 3-j symbol
to be non-zero the following relationship must hold:

|3-3|<k<3+30rk=0-6.

The second 3-j symbol will be non-zero for: -M; +q+ M, = 0= M, - M, = g and
[J—J| <k<J+Jork<2Jand|q| <k.

These conditions for the 3-j symbols dictate the selection of k=0, 2, 4, 6 for the crystal
field splitting.

The 6-j symbol will be non-zero for [J—k| <J <J+kand |[L'—S|<L<L +S.

The doubly reduced matrix elements(t//ln s 1 U* Ly 1;> are specific to a given lantha-
nide ion. It was shown that the crystal field does not affect them substantially. Therefore,
instead of calculating them for each system, the values tabulated by Nielson and Koster can
be used [34].

With all of these tabulated values, only the B’; needs to be determined to evaluate the
energy level splitting based on the crystal field and its symmetry.

For Pr’*, which has the valence configuration f*, in D3, symmetry the reduced matrix
elements (U*) and (U®) vanish (Table 1.9) and only (U?) needs to be evaluated. Therefore,
for the 3P2 term, with L=S=0,J=2, g =0, k=2 (see above for the discussion of the values
of g and k depending on symmetry), and M;=0, +1, +2, it can be shown with Equation 1.34

above that
(f*3P,20|H|f?*P, 20) = —%Bﬁ
(f23P, 21|Hy|f? P, 21) = —%BS
(f*3P,22|Hy|f* 3P, 22) = éBg
(f*3P,20|H|f**P, 00) = ‘fsg
(f*3P,21|Hy|f? 3P, 11) = 13’—033

etc.

Similar reasoning for the *P, and 3P, terms allows the drawing of the diagram shown in
Fig. 1.7, which represents the relative energies of the crystal field split terms.

1.3.6 Zeeman Effect

As mentioned above, in the case of Kramers’ ions with non-integer value of J, the crystal
field does not completely lift the degeneracy of the J levels. This degeneracy can however
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Table 1.9 Selected doubly reduced matrix elements <y/,nSL||UkHy/,n5rL/> for the £ Pr’* jon [34]

Prt, f* (wrsl|Ullwrsy) wrsl UM lwrse) U llypse)
3p /3 -

P/pP /\/ﬁ 0 0
e N T 0
3F/3F _]/3 _1/3 _1/3
e VT Vo R

100
L - 5Bo
3p, .°
“eoo. f6(112_ 1 B2 _
“~o_ I4(0) 10 ~o -
. -x
12
550
3 o
50 0B
’/2() ‘%Bg V2 10 2o
3P, _-v 5 70
T~ Fe(i1)___ _17 BZ .
10 o
Py I4(0) 0 v

Figure 1.7  Relative energies (not to scale) of the crystal field split Py (J=0, 1, 2) terms of Pr’*
in Dsp symmetry

be lifted in the presence of an external magnetic field and is often referred to as the
Zeeman effect [44]. The magnitude of the splitting is proportional to the strength of the
applied magnetic field. The expression for the Hamiltonian H, is given in Equa-
tion 1.35 [42].

H,=gugB-J (1.35)

up is the Bohr Magneton; B is the magnitude of the external magnetic field and g is Landé’s
factor (Equation 1.36) in the LS coupling scheme.

JU+D)—=LIL+1)+SS+1)

=1+ 1.36
2J(J+1) (1.36)

The effective magnetic moment y is given by Equation 1.37.
W= —ppgl (1.37)

If the applied magnetic field is parallel to the z-axis of a crystal, the splitting energy E is
given by
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Ez = uggB(JIM_|J.|IM.) (1.38)

My is the quantum number associated with this perturbation. If, on the other hand,
the Zeeman interaction is anisotropic, the Hamiltonian in Equation 1.35 should be re-
written as

Hz = pp(8,BxJx +gyBny +g.B.J;) (1.39)
with the components along the x, y and z axes designated by the appropriate subscripts.

1.3.7 Point Charge Electrostatic Model

Qualitative estimation of the B’; parameters and therefore of the symmetry around the metal
ion and the positions of the energy levels can be done utilising the point charge electrostatic
model (PCEM), which assumes that the electric field acting on the central metal ion is
generated by the ligands as negative point charges, and all ligands have the same charge.
These point charges are arranged according to the correct symmetry of the metal ion site.
Taking into account Equations 1.27 and 1.30, and considering that N ligands will be at a
distance R4 and M ligands at a distance Rz (R4 < Rp), Equation 1.28 can be re-written as
Equation 1.40.

k k
K _ N > () / i Z 2 () 4Tk
BO - ZA:l ZLe RI]Z_H 2k T ]YO(HAa ¢A) + B=1 ZL Rk+1 2% + 1Y0(037 ¢B)

rk [
= Zz;l ZL€2 I<€k+>l 2k + 1( l)qRe Yk(gAa ¢A)
A

rk
+ Zg]:l ZL€2 1<€’§+>‘ 2% + 1( l)qRe Yk(937 (/78)
Bf =YV, 7 247) (—=1)/ImY? (04, $,)
SIS REH 2k+1 A
+ 3 Zie? () [ 4 (—=1)'ImY? (05, ¢5)

REHV 2k + 1
(1.40)

0, and ¢, are coordinates of the ligand point charges. Since the positions of the ligands are
important to indicate the angles, and therefore the sign of the crystal field parameters, the
choice of molecular axes should follow the usual convention, in which the axis of highest
rotational symmetry coincides with the z-axis. Also, with judicial choice of the molecular axes,
it is possible in some cases to set B’k 0 [30]. Finally, since the radial parts of the parameters
Bf and Bk are the same, the ratio B’; / B" does nothave aradial component and will be a constant
for a glven symmetry. Therefore, only the Bf with k=2, 4 and 6 needs to be fit.

For example, if the metal is situated in a hypothetlcal D3, symmetry environment with
three equidistant ligands, the parameters of interest are given by the expression for H .,
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below, as demonstrated in Section 1.3.4:

Hy = B{CS + ByCy + B§CS + BS(CO + CY)
Since the ligands span a triangle and their position angles 8/¢ are equal to 90°/90°, 90°/120°

and 90°/330°, with the help of the tabulated spherical harmonics, and substituting in
Equation 1.40, it follows that:

By utilising a similar procedure, it can be shown that for a general prismatic polyhedron
with p axial ligands, n equatorial ligands and m ligands in the base of the prism [30]

r2 n
B} = Zé? <R—3> [p -5+ m(3cos*6 — 1)}

4
3
B} =2zé? <;5> [p + §” + %(35«:05“9 —30cos’0 + 3)} (1.41)
2
BS = Zé? <I’;—7> [p — T—Z + %(23100569 —315c0s*0 + 105c0s%0 — 5)]

Some polyhedra are relatively common for lanthanide ion complexes, and they will be
discussed here in more detail. They are the square antiprism, the tricapped trigonal prism and
the monocapped square antiprism, shown below in Fig. 1.8. The metal ion is situated in the
centre of the polyhedron and the ligands, as point charges, are located at the vertices. The
proper axis of highest symmetry is chosen to coincide with the z-axis, as mentioned before.

The previous section described the expressions for the crystal field parameters for regular
polyhedra. However, most frequently the geometry around the lanthanide ion departs more
or less drastically from the regular geometry. Of the crystal field parameters, B’é depends on
0, while B’; depends both on @ and ¢. Therefore, distortions of both angles will affect both
sets of parameters, while changes in ¢ will affect only the latter. When fitting the
parameters, it is common to do an initial fit at a higher symmetry and then refine at the
lower, coordination compound-appropriate symmetry.

The locations of the point charges are given in Table 1.10 and different coordination
polyhedra and their parameters are described below.
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R'
N
N
X y

PR
N/

square anti-prism tricapped trigonal prism monocapped square anti-prism
CN 8,D4y4 CN 9,D3, CN 8,Cy,

Figure 1.8 Common coordinat ion polyhedra for lanthanide ions, shown with the Cartesian
and polar coordinate system

1.3.7.1 Square Antiprism

This coordination geometry is often encountered when the metal ion has the coordination
number (CN) 8, for which p =n =0 and m =4. The point group symmetry is D, with four
ligands spanning a square above and four ligands the other square below the central ion. An
Sgimproper axis of rotation coincides with the z-axis and passes through the metal ion and in
between all eight ligand point charges. The square antiprism is obtained by 22.5° clockwise
and counter-clockwise of the top and bottom faces with respect to the metal ion from a cube.
The square antiprism will be elongated when 6 > 54.74° and compressed when 6 < 54.74°.
The angle ¢ can distort from 2 X 22.5° by ¢, upon which the symmetry will decrease to D,.
Substituting into Equation 1.40 yields the following B’; parameters for a distorted square
antiprism.

Table 1.10 Angular coordinates of the ligands as point charges for the three coordination
polyhedra and distorted coordination polyhedra®

0/(0 [°] Dyg— Dy Dsp— D5 Cay—Cy
Atoms spanning top face 0/45 + ¢ 0/90 + ¢ 125.7/45 + ¢
0/135+¢ 0210+ ¢ 125.7/135+¢
0/225+¢ 0/330 +¢ 125.7/225+¢
0/315+¢ 125.7/3154¢
Atoms spanning bottom face 180 —6/45—¢ 180—6/90 — ¢ 70.1/45 — ¢
180-0/135—-¢ 180— 0/210—¢ 70.1/135—¢
180—6/225—¢ 180—-6/330—¢ 70.1/225—¢
180-0/315-¢ 70.1/315—¢
Capping atoms — 90/30 0/0
90/150
90/270

? ¢ is the angle by which the bottom and top faces distort from the regular polyhedron, past the 45° angle in the case of
the square antiprism and monocapped square antiprism and 0° angle in the case of the tricapped trigonal prism.
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Bg_z2< >4(3c:0526 1)

B} =Zé? {r >(35c0s49 30cos*0 + 3)

4
B} = —\/277026‘2 <I’; > sin*6cos 4¢

1
zz< >(231€0569 315cos*0 + 1 — 5cos’0 — 5)

Bg_2

21 0
BS = ——27¢* @sm *0(11cos*0 — 1)cos 4¢

2/ia R

As can be seen from the equations above, parameters Bj and BS have the distortion angle ¢
in their expression and are therefore indicators of the magnitude of the distortion of the
square antiprism. Along similar lines, (3cos” @ — 1) vanishes for 54.74°, the cubic angle, and
therefore the presence of the parameter Bj is an indication of the distortion of the square
antiprism from the higher symmetry cube.

1.3.7.2 Tricapped Trigonal Prism

The tricapped trigonal prism is a commonly encountered coordination polyhedron for
CN 9, although often distorted. For this polyhedron p =0 and n=m = 3. The symmetry
is D3, and the polyhedron has three atoms at the top spanning a triangular face and
three atoms at the bottom spanning another triangular face, eclipsed with the top face. A
Cj; axis contains the metal ion and is collinear with the z-axis. The point charges spanning
the top and bottom faces will be at a distance R4, while the capping charges will be at a
distance Rz. When the top and base faces twist by 2 X ¢, the symmetry decreases to Dj.

2
B(z)—Z2< )9 (2c0526 1)

4
B} =Zé? < > (7000540 60cos’0 + 9)
R’

BQ‘:Z&@S\/g
~ R

2

(sin®@ cos @ sin 3¢)

6
BS = Z¢ <R )3 (462cos69 630cos*6 + 210cos’6 — 15)

PEPAEN

sin*0(11cos’d — 3cos O)sin 3¢

6 = 72 ()3V2
B=ze g 5

(2s1n69 cos 6 + 1)
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1.3.7.3 Monocapped Square Antiprism

This coordination polyhedron is a special case of the square antiprism, with p =1, n=0 and
m =4, as a capping atom is added on top of the top face of the antiprism, which results in a
top face with a larger area. The symmetry around the metal ion is Cy, with CN 9, with a C,
axis passing through the metal ion and the capping point charge.

2
B(Z) = Ze? % [1200329 - 11]
4
Bg = Ze? <;5> [35005449 — 30c0s?0 + 4]

6
11
B = Zé* <;7> ~3 + 3 (231c0s°0 — 315c0s*6 + 105c0s°6)

The crystal field parameters B and BS, which account for the distortions from Cj,
symmetry, are analogous to the square antiprismatic case.

1.3.8 Other Methods to Estimate Crystal Field Parameters

The point-charge electrostatic model is useful in illustrating how symmetry influences the
signs of the crystal field parameters B’;. However, it does not usually result in accurate
determinations of their magnitude and therefore other methods have been developed that
lead to a better estimation. One such approach is based on the angular overlap model AOM
developed and expanded to the felements by Jergensen [45]. Another approach is the simple
overlap model SOM, proposed by Malta [46].

1.3.8.1 Angular Overlap Model

The angular overlap model (AOM) considers the existence of weak covalent interactions
between the Ln(IIl) orbitals and the ligand orbitals which perturb the metal-based orbitals.
The perturbation is proportional to the overlap of the metal and ligand orbitals and is
evaluated in terms of the anti-bonding energy E* of the f orbital considered, as the anti-
bonding orbital is mostly metal in character. For a complex with N ligands L, MLy, this
energy is described by Equation 1.42 [47].

N
E*=¢ Z (FLy* (1.42)
j=1

e, are quantities that depend on the radial functions of the metal M and the ligands and on
the bond distances between the two and the nature of the interaction [A=0 (¢), 1 (7)], [
is the angular momentum quantum number, and Fﬁ are the angular overlap integrals.
For an MLy system with Dj, symmetry, for which was shown above that
H. = BiC} + B{Cy + BSCS+BS(C + CP), the energies of the f orbitals in units of e,
are shown in Table 1.11. The energies for other symmetries can be found in Reference [47].
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Table 1.11 Energies of the f orbitals in an MLg complex in units of e, for D3y, symmetry [47]

f Orbital Symmetry [ e

= ay 3/16 117/32
Xz e 117/64 213/128
yz*

z(*—y?) e’ 45/32 195/64
Xyz

x(x*=3y?) a, 75/32 45/64
y(3x*—y?) a, 0 135/32

Based on these energies, the splitting pattern shown in Fig. 1.9 for the f orbitals of
complex MLg in D3, symmetry can be deduced.

The B’q‘ C’; parameters can be expressed in terms of the AOM e, [48], and for the B(% C% in
D3, symmetry [49].

B)C: = % Vs {(21‘%3)} X (—1 + 4f, — 6f,sin’0)e,,
J 1

. e, e e e . .
with f; ==L =-2 =% and f, = -2 = 2, for the ligands at distances R, and R,.
ey en e e en

Using these considerations, for Pr(IIl) in LaCls, Urland calculated B%C§ =164 cm™!,
which compares well with the experimental value of 150 cm™! [49].

1.3.8.2  Simple Overlap Model

In the simple overlap model (SOM), the crystal field experienced by the 4f electrons is
generated by point charges located in small regions around the middle distance between
the lanthanide ion and its ligands. These regions of charge are not necessarily positioned
exactly in between the lanthanide ion and the ligands; therefore, a correction factor, f;,
which is given by Equation 1.43, is introduced to account for this asymmetry.

1
= 1.43
PL=1 ) (1.43)
a,
!
PR AE,=66/128 e 7123/128 ¢,
I ,—_
Il
R AE,=54/128 e -167/128 e,
A
i .
—=_ ; AE,=156/128 e -78/128 e,
\\ e 0'2 ¥
A Y
N AE,=24/128 ¢ -72/128 e,
L S

Figure 1.9 Splitting pattern based on the AOM of the f orbitals of complex MLg in D3, symmetry
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In this equation, p; is an additional correction factor to the position of the region of charge.
A positive sign indicates that this region is shifted towards the ligand, which is usually
observed for small electronegative species such as O and F. The negative sign will be used
when the ligand is bulkier and contains atoms such as N and Cl and the region of charge is
displaced towards the lanthanide ion. In initial publications on LaCly;:Nd** p, was set at
0.05 and therefore f; = 1.1 with the region of charge towards the lanthanide [46], and on
YOCL:Eu** o =0.95 and fic; = 1.0, showing the centroid shifted towards O for the Ln—O
interaction and towards Ln for the Ln—Cl interaction, respectively [50]. It was later
suggested that p; can be estimated using Equation 1.44 [51].

R 3.5
9, = 0,05 <R—°> (1.4)
L

Ry corresponds the shortest M—L bond and R; is the M—L bond distance for the ligand L of
interest.

The charge of the region between the ligand and the lanthanide is equal to —g; ep, where p
is proportional to the magnitude of orbital overlap between lanthanide and ligand, e is the
electron charge and g; is the ligand charge factor. Instead of the ligand charge Z;, which is
used in the PCEM, in the SOM g; is used in the estimation of B’; (Equation 1.40). Both
crystal field parameters are related by Equation 1.45.

Bi(SOM) = p(28)**' B{(PCEM) (1.45)

The success of the SOM for estimation of the crystal field parameters can be seen from the
data summarised in Table 1.12, which shows the phenomenological B’; compared to the
numbers obtained through the PCEM, SOM, and through AOM for an acetylacetonato
complex of NdA(III).

1.3.9 Allowed and Forbidden f-f Transitions

Optical transitions within the 4f shell arise due to interaction of the electric and magnetic
components of the electromagnetic radiation with the f electrons and are therefore either
electric or magnetic dipole transitions (ED or MD), respectively. The electric dipole
transition can be considered a linear displacement of charge and its direction is reversed
through inversion, meaning it has odd parity. The magnetic dipole transition, on the other

Table 1.12 Comparison of experimental Bg [cm™ ' with values calculated with PCEM, AOM and
SOM for Nd(btmsa) ; [52]

B’; Phenomenological PCEM AOM SOM
Bé -2912 —4220 -1834 -2964
Bg +920 +370 +1391 +821
BS -516 61 -304 -427

BY +331 +154 +512 +1083
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hand, corresponds to a rotational displacement of charge, which, upon inversion, does not
change its sense of rotation and therefore has even parity. Which transitions are allowed and
which are forbidden is determined by selection rules.

1.3.9.1 Empirical Parameters Describing Optical Transitions

In absorption spectra the peak maxima is reported either as absorbance A or as molar
absorptivity &, which is independent of sample concentration, and they are related as shown
in Equation 1.46.

A =¢cl (1.46)

c is the sample concentration and / the path length covered by the light through the
sample.

In the case of narrow absorption bands, due to signal-to-noise considerations, it is
better to report the area of the peak [e(v)dv (v are wavenumbers in ecm™ "), which is
proportional to the peak intensity. Two other quantities, which can be reported instead of
g, are the transition dipole strength D and the oscillator strength P, to which they are
related by the following two equations [53].

D=9x 10—39J@dz (1.47)
14
P=432x IO_QJ'S(E)dl_/ =4702 x 10¥ x5y x D (1.48)

7y is the wavenumber at absorption maximum.

For transitions forbidden by selection rules, P < 1 and, in the case of the Ln(IIl), P ~
1078 esu? cm? for MD allowed and ED forbidden transitions, with Emax < 10 cm™! M
which is habitually on the order of 1cm™" M™".

Correction factors for the dielectric medium, represented by its refractive index n, and
for the degeneracy 2J+ 1 of the terms are included, since both influence the transition
dipole and oscillator strengths. The corrected expressions are given in Equations 1.49
and 1.50.

X

Dcorr. =———D 1.49
2J +1 ( )
X
P, I S L.
@ 2J +1 (1.50)

y are the dielectric medium correction factors for ED and MD transitions. For absorption,
these are given by Equation 1.51.

_(n?+2)

Xup =1
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For emission, the equations are:

_ n2(n? + 2)*
XED =g (1.52)

— 3
Xup =1

Since many f-f transitions of the Ln(IlT) have both ED and MD components, the overall
experimental dipole strength is given by Equation 1.53.

1

Dexp = 1 (mpDup + xgpDED) (1.53)

1.3.9.2  The Spin Rule

For a transition to be spin allowed, the spins of excited and ground state need to be the same.
In the case of several f-f transitions of the lanthanide ions, these are accompanied by a
change in spin and are therefore strictly forbidden. However, as mentioned previously, due
to the spin—orbit coupling the total spin quantum number S is no longer completely valid,
and therefore this rule is relaxed [53].

1.3.9.3 The Parity Rule

The parity or Laporte rule states that for an optical transition to be allowed, the parity
between final and initial states needs to change [53]. Utilising group theory arguments, it can
be concluded that, for the transition to be allowed, the totally symmetric irreducible
representation /" (Bethe’s symbol, equivalent to Mulliken’s symbols A;) needs to be
contained in the direct product shown in Equation 1.54.

ri®rery (1.54)

I'; and I'yare the symmetry labels of the initial and final states and I” is the symmetry of the
operator of the transition being considered. In the case of an electric dipole transition, in
which interaction of the electric part of the electromagnetic radiation induces a linear
displacement of electric charge in the ion or atom, the operator Ogp transforms as x, y and z.
It is given by:

Orp = —e Z 7 (1.55)

i

Since both the operator and the f orbitals have u (ungerade, odd) symmetry, electric dipole
transitions are forbidden by the parity rule (see section below on Judd-Ofelt theory and
induced electric dipole transitions). The selection rules for these transitions are summarised
in Table 1.13.

The magnetic dipole operator O,,p induces a rotational displacement of electric charge in
the ion or atom due to interaction with the magnetic component of the electromagnetic
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Table 1.13 Selection rules for {-f transitions

Transition AS AL A
ED 0 <6 <6 2,40r6ifjJor)=0)
MD 0 0 0, +1

radiation. It transforms as R,, R, and R.. Its expression is:
0 ch S+ 25 (1.56)
=—— i + 25 .
MD Yme i i i

Since Oy,p has g (gerade, even) symmetry and the f orbitals u, magnetic dipole transitions
are allowed in centrosymmetric and noncentrosymmetric point groups. However, the
selection rules AJ=0, 1 (but not 0« 0) are followed (Table 1.13), and so few magnetic
dipole transitions, such as the Eu’* D, — "F, transition, are known.

Electric quadrupole transitions are also possible; despite the even parity of the electric
quadrupole operator, the intensity of these transitions is low, and they are less relevant for
the lanthanide ions. They will therefore not be addressed here [29].

1.3.9.4  Symmetries of the Terms

To help decide which transitions between energy levels of lanthanide ions are electric or
magnetic dipole allowed, depending on the symmetry in which the lanthanide ion is located,
it is useful to determine the symmetries of the terms split by the crystal field. This can be
done with the rotation formula (Equation 1.57).

1

sin (J + E)a

2C) = ———57— (1.57)
Sin E

In this equation, y is the character of the symmetry operation C,, and a the rotation angle.
For the identity operation y(E)=2J+ 1, which corresponds to the degeneracy of the term.
For the operations ¢ and i the characters are y(c) =—y(C,) and y(i) =—y(E), respectively.
Using these formulas it is possible to determine the reducible representation I" associated
with each term and, upon reduction into its irreducible components, utilising the reduction
formula (Equation 1.58), the symmetries of the individual crystal field split terms.

1
ai=3 sn 2 2" (1.58)

a; is the number of times the reducible representation I, is contained in the irreducible
representation I';, i is the order of the group, gz is the number of operations in each class R of
symmetry operations and y is the character of the irreducible I'; or reducible representation
I, for each class R.
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Table 1.14 Multiplication table showing the selection rules for the Oy, point group [30]

O rt rt rt r rt
r+ - - — Ry Ry, R, —
r} - - — - Ry Ry, R,
r - - — Ry, R, R, Ry Ry, R,
rt Ry Ry, R, - Ry Ry, R, Ry Ry, R, Ry Ry, R,
r - Ry Ry, R, Ry Ry, R, Ry Ry, R, Ry Ry, R,

If J is a half-integer, character tables for double groups are utilised for the reduction,
which contain the additional symmetry element R, defined as rotation by 2x and y(a+
21) = —y(@) [54]. In addition to the symmetry elements of the common character tables, the
additional symmetry elements C,R (same character as C,), Cﬁ‘l (same character as C,,) and
C™™ (same character as C)') are present.

For example, Eu(III) has the electronic configuration 4f° with the ground state multiplet
7F0, 7F1, 7F2, 7F3, 7F4, 7F5 and 7F6, in order of increasing energy. Under octahedral
symmetry O (order of the group & =24) and utilising the rotation formula (Equation 1.57) it
can be shown that 'F; transforms as the reducible representation I', shown below.

O E 6C, 3G, 8C; 6C,
I, 7 —1 —1 1 —1

Using the reduction formula (Equation 1.58), it can further be shown thatI', = A, + T; + T,
or I',=15+T4+TI5 using Bethe’s notation. If the O, group symmetry is used instead,
[,=As+Tig+ T, or I =15 + T'f + 'Y using Bethe’s notation. The term splits into
seven levels, one of symmetry A, (or A,,), three degenerate ones of symmetry T (or T,)
and three of symmetry T, (or T»g), consistent with the 2/ +1 =7 degeneracy of the parent
term. A similar exercise for the °D, term shows that its I, =T7. Inspection of
the multiplication tables indicates that the only transitions allowed are the magnetic dipole
transitions, which occur between terms with irreducible representation, which contain the
Oup, as required by Equation 1.54 and shown in Table 1.14. Therefore the 5DO -F,
transition has a magnetic dipole allowed component. Other transitions are observed for
Eu(IIl) nonetheless, and those include induced electric dipole transitions, which will be
discussed in the following paragraph.

Complete multiplication tables can be found in the literature [30].

Similarly, it can be shown that the 2F5 /o term of Yb(III) transforms in D; as the reducible
representation I, displayed in Table 1.15.

Table 1.15 Reducible representation of the *F /2 term of Yb(lll) in D3 symmetry

D, * E R Cs cl 3G, 3C,R
C3R GsR
T, 6 -6 0 0 0 0

?The double group D) is used instead of Ds, as Yb(lll) is a Kramer’s ion.
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Table 1.16 Multiplication table showing the selection rules for the Dj point group [30]

Dy ED MD

ry Ise Iy Is6
| a, o a, o a, 0,1 a, r
I'se a, o T a, c

After reduction I', =2I"4 +I's,¢, which corresponds to two doubly degenerate levels with
symmetry "4 and two degenerate levels with symmetries I's and I ', consistent with an overall
sixfold degeneracy which is not completely lifted by the crystal field, as Yb(III) is a Kramers’
ion. Analogously, the 2F7 , term transforms as the reducible representation I', =304+ I's 6.

Inspection of Table 1.16 above shows that transitions between these two terms are both
electric and magnetic dipole allowed as well as polarised, since they are allowed only in
certain directions. The transition between levels with I's ¢ symmetry is allowed only in 7
polarised spectra. A z-polarised spectrum is measured with the magnetic field perpendicular
and the electric field parallel to the crystallographic ¢ axis. An a-spectrum, on the other
hand, is measured with both the magnetic and electric field vectors perpendicular to the
crystallographic ¢ axis. Measurement of the o-spectrum occurs with the magnetic field
parallel and the electric field perpendicular to the ¢ axis. Polarised spectra yield useable
results only in uniaxial crystals, which have trigonal, tetragonal and hexagonal unit cells.

1.3.9.5 Intensity of the MD Transitions

The magnetic dipole strength of a transition between the initial and final states y; and
can be theoretically evaluated by determining the matrix elements of the dipole moment
operator Oysp coupling the two states [40]. By re-writing Equation 1.56 without the
summation over all i electrons, O,p is given by

eh

o C(IZ +25) (1.59)

Omup = —

Therefore, the strength of the magnetic dipole transition D,,p is given by Equation 1.60.

2’;12
Duo = (w{Ouslw)' = o

G| (1YSLI|On| S L) (1.60)

After separating the quadratic term into expressions containing individually the total orbital
angular momentum operator L and the total spin angular momentum operator S, it can be
shown that [55]

L

. J S .
(INSLI|L|VS'L'T') = 8558 (—1) T+ { P }[(ZL + 1) + 1)’LIL + 1)]”
J
S

<lNSLJ‘S'|lNS’L’J’> = 555,5LL,(_1)S+L+J+1 { S

L 1
P | }[(2S + 127 + 1)25(S + 1))~

(1.61)
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Therefore, for MD transitions the following selection rules arise.

AS=0

AL=0

AJ =0,=+1, but0 < 0 forbidden
As there are three possible values for AJ, it can be shown that for:
1. AJ=0, J=J and

("SLI|L +28|I"S'L'J") = glJ(J + 1)(2J + 1)]”

JU+D)-LIL+1)+S5S+1)

=1+
§ 20+ 1)

g, the Landé factor, describes the magnetic moment of the ion.
2. J=J-1

1

/
(I"SLI|L+28|1"S'L'(J - 1)) = [%(S +L4+J+DS+L+T DI +S-L)J+L—- S)} ’

3. J=J+1

1
P 1 /2
(I"SLI|L+28|I'S'L'(J + 1)) = {m(s FL+T+2)(S+J+1—L)L+J+1-S)(S+L— J)}

Representative values for dipole and oscillator strengths for selected MD allowed
Ln(III) transitions are summarised in Table 1.17.

Since MD allowed transitions are relatively independent of the geometry surrounding the
lanthanide ions, both ligand identity as well as coordination polyhedra do not influence
transition intensity appreciably.

Table 1.17 Dipole D and oscillator P strengths for MD allowed transitions for select Ln(lll)

Ln(11) MD allowed Elcm™] Puvb NS
transition [107% Debye?]? [107° Debye?]

Pr(l) SHy < *H, 2300 9.76 90

Nd(l1l) IR 2000 14.11 15

Eu(lll 5D, « 7F, 16900 7.47 9.4

21 Debye=1x10""% esu cm
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1.3.10 Induced Electric Dipole Transitions and Their Intensity — Judd—Ofelt Theory

Since the electric dipole operator has odd parity, electric dipole transitions are allowed
only between states of different parity, as mentioned before. Therefore, the electric dipole
operator must be combined with other odd-parity operators to enable transitions within
the f shell [56]. If the metal is present in a symmetry site without inversion symmetry, the
parity rule is no longer applicable and therefore electric dipole transitions can be
observed. However, even in centrosymmetric point groups, electric dipole transitions
can be observed, as vibronic coupling, which is coupling of the electronic and vibrational
wave functions, lifts the site symmetry. Alternatively, admixture of electronic states of
opposite parity, such as d orbitals, mediated by the crystal field, which was proposed
concurrently and independently by Brian Judd [8] and George Ofelt [9], can be invoked to
explain the intensity of these transitions. While arbitrary, a small participation of the d
orbitals can be seen as a small perturbation to the system, which results in new perturbed
wave functions ¢, and ¢, for the initial and final states, where the wave functions y
designated with a and f correspond to the orbitals of higher energy with opposite parity.

Z <ll/a }Hcf|llf/}> ‘//ﬁ|

(@a] = (wa| +

W %
o) = ) z”' Holvs)

E,—Ep

By utilising these new wave functions, the dipole strength Dgp, of the line corresponding to
the transition between the states a and b is given by Equation 1.62.

Dgp = <§0a‘0ED|§0b>2

_ (walHetlwp) (wslOlws)  (walOrplwy) (ws|Herlwn)
= : }

: E,—E; E,—E;

2

(1.62)

In this expression, since Ogp is odd-parity and the states a and b have opposite parity to @
and p, those terms will not vanish. To prevent the terms involving the crystal field
Hamiltonian from vanishing, the B’; parameters have to be odd, with k=1, 3, 5 and g <k.
The crystal field operator H,, and electric dipole operator Oy, can be re-written as shown
below.

Hy = Z riCy(0:, ) (1.63)
Orp = ZA’ Z ri(Ch); (1.64)

C’; are the tensor operators introduced in Equation 1.31, which transform like the spherical
harmonics.
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Substitution of these expressions into Equation 1.62 leads to Equation 1.65.

2
1 A t J A J' 1 1t
> (=1L DA, , ,
Dgp = pst, even A q —P—4qg P -M; P —q Mj Lr

X (y, | U* ) x B(1, 2)

with

S R I A W A A A
S D) = 2S04 1T 4 11}
60 =23+ DEr + 1D x{l ! l}<0 0 0><0 0 °> (1.65)

n’l’)(nl‘r’n/l’)
AEnl
In this expression 1=1+1, ¢ is odd, A;

><(nl|r

_ 5
Gy
parameters, with ¢t — k and p — ¢ and, for the 3j and 6j symbols to be different from zero and
therefore the dipole moment does not vanish, the following parameter values and selection
rules arise for induced electric dipole transitions:

(Equation 1.29) are the static crystal field

A1=2,4,6

t=1,3,5

AJ<6(mo0« 0)

AJ =2,4,6 whenJ orJ' =0, otherwise AJ =0, +1
AL<L6

AS=0

Following some simplifications, such as the assumption that all Stark levels of the ground
state manifold are equally populated, and that the emission is isotropic, the dipole strength
can be simplified to Equation 1.66.

Deo=c 3" (|l (166)
=246

U* are the tensors of the electric dipole operator of rank 1 =2, 4, 6, and the terms in brackets
are the doubly reduced matrix elements for intermediate coupling, which have been
determined by Carnall for all lanthanide aqua ions [25-28]. Some are summarised in
Table 1.18.

Q, are the Judd—Ofelt parameters in cm™! [8,9,55].

A"

A
Q=2+D> > Tfrnsz(t,z) (1.67)

p 1=135
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Table 1.18  Selected squares of doubly reduced matrix elements |{w||U* ||y ) }2 for Eu(lll) [26]

A=2 A=4 A=6
7F0 N

°D, 0 0 0

°D, 0 0 0

°D, 0.0008 0 0

oL, 0 0 0.0155
7F1 -

°Dy 0 0 0

°D, 0.0026 0 0

°D, 0.0001 0 0

oL, 0 0 0.0090

The expression above shows that odd-order components of the crystal field and radial
integrals of 4f" wavefunctions and of perturbing wavefunctions of opposite parity comprise
these parameters. These parameters appear in the definition of the oscillator strength P, for
a particular induced electric dipole transition between and a and b, as shown in the equation
below [57].

872me(n® + 2)°

P b) =
(@< b) == 0T 1)

3wV )| (1.68)

=246

The Judd—Ofelt parameters can, in principle, be calculated; however, it is more common to
treat them as phenomenological parameters, which can be fitted from absorption or emission
spectra, through measurement of the experimental dipole strength as defined in Equation
1.48 and the use of the tabulated doubly reduced matrix elements with Equation 1.68. The
Judd—Ofelt parameters, as determined experimentally, are often given in units of 1072° cm?.
Q, is strongly affected by dynamic coupling between the ligands and the lanthanide ion,
which is related to changes in the ligand-generated field due to the incident light. This
changing field in turn induces f-f transitions. ¢ is strongly influenced by the rigidity of the
host the lanthanide is embedded in. In this static coupling model, the ligands generate a
crystal field potential of odd parity, which in turn induce 4f states of mixed parity. The
electric dipole component of the incident photons then induces transitions between these
states, but the ligands themselves are not affected by the incident radiation. The Q4
parameters do not show specific trends and involve both dynamic and static coupling
mechanisms [57,58]. In general, if the host matrix is the same and the lanthanide ions are in
isostructural positions, a decrease of the 2; parameters along the series is expected, and is
indeed observed for Qg, due to static coupling prevalence (Tables 1.19 and 1.20). In the case
of Q, the trend is less consistent, and, for 5 no trend is observed, as dynamic coupling is
prevalent.

The Judd—-Ofelt theory does not estimate well transition intensities for Pr(Ill), as it is
likely that the 4f'5d" configuration contributes significantly to the perturbation described in

@, and @;,.
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Table 1.19 Judd-Ofelt parameters for aqueous Ln(llll) ions in acidic solutions [31]

Ln Q, [1072%cm?] Q, [1072%cm?] Qg [1072%cm?]
Pr 32.6 5.7 32.0
Nd 0.93 5.00 7.91
Sm 0.91 4.13 2.70
Eu 1.46 6.66 5.40
Gd 2.56 4.70 4.73
b 0.004 7.19 3.45
Dy 1.50 3.44 3.46
Ho 0.36 3.14 3.07
Er 1.59 1.95 1.90
Tm 0.80 2.08 1.86

Table 1.20 Judd-Ofelt parameters for Nd(Ill) in selected environments [57]

Nd Q, [107%%cm?] Q@ [107°%cm’] Q4 [107°cm’]
Aqua 0.93+0.3 5.0+0.3 7.9+0.4
Nitrate 9.2+0.4 5.4+0.3 7.7+0.45
Acetylacetonate in DMF 245 0.71 9.1
Acetylacetonate in MeOH/EtOH 15.7 0.73 7.4
Dibenzoylacetonate in MeOH/EtOH 34.1 2.5 9.1
Bromide 180 9 9

lodide 275 9 9

YAG 0.2 2.7 5.0

1.3.11 Transition Probabilities and Branching Ratios

The probability of an individual transition J«J' to occur is given by Equation 1.69.

, 64r* e’
A(J,J) = TTOTE epDeD + X3pDup) (1.69)

The correction factors for dielectric medium, y, used in this equation will depend on the
transitions being absorption or emission. Further, since individual transitions will have
different probabilities, it is possible to define a radiative branching ratio f(J,J'), given by
Equation 1.70.

AUL)  EULD)

Soaw, sy Y EULT)
J J

The radiative branching ratio can be calculated through the probabilities of the transitions,
or, in the case of emission, it can be determined experimentally from the emission spectra,
where E(J,J') is the integrated emission spectrum of transition J«J' and Z E(J,J') is the
integrated emission spectrum over all transitions.

ﬂR(Jw],) =

(1.70)
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In the case of emission, A(J,J') is also known as Einstein’s coefficient of spontaneous
emission, and the sum of all probabilities for all radiative transitions is equal to the inverse
of the radiative rate constant, kg, in turn the reciprocal of the emissive state lifetime, 7.

AULT) AU
doau sy ke
J

Werts and co-workers [59] demonstrated that for the purely magnetic dipole transition of
Eu’*, °D, — "F,, the equation above can be rearranged to

ﬁR(JwI/): :TRA(JMI/) (17])

1 ECD,—F
— = ACDy - TF ) (W) (1.72)
T ECD, - 'F))

and A(SDO -'F ) =14.65s7" is the spontaneous emission probability of the purely
magnetic dipole transition in vacuo, which was calculated through Equation 1.69 above.
For other lanthanide ions, Equation 1.72 can be re-written as Equation 1.73.

1 8rxen’v? (27 + 1)
— =2303 — |e(D)dv 1.73
- Ni @I +1) JS(”) v (1.73)

J e(@)dv is the integrated absorption spectrum of the transition in molar absorptivity as a
function of wavenumber.

Werts and co-workers tested the validity of these calculations by comparing experimental
and calculated parameters for well-studied systems, the europium salts of dipicolinic
acid [59]. They found an error of about 15% between experimentally determined and
calculated branching ratios and radiative lifetimes.

1.3.12 Hypersensitive Transitions

Hypersensitive transitions are electric dipole transitions whose shape and intensity display
large dependence on the point group symmetry of the metal ion, as well as on the pH,
temperature, and ligand type. These transitions obey the following selection rules.

|as|=0 |aLj <2  |AJ[<2

Table 1.21 below summarises hypersensitive transitions observed for the different
lanthanides. These transitions are usually observed for systems that display large values
of U? and therefore ©, and comparatively small and symmetry-independent values of €,
and Qg [13].

While over the years several explanations have been proposed for hypersensitivity,
including symmetry arguments, vibronic, charge-transfer and electric-quadrupole transi-
tion contributions [57,58], the most successful to date has been the dynamic coupling
mechanism proposed by Mason et al. [60]. These authors suggest that the intensity of the
hypersensitive transitions results from a non-zero electric dipole transition, which arises
from an electric dipole in the ligand induced by the f orbitals of the metal ion. By analogy
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Table 1.21 Hypersensitive transitions of the Ln(lll) ions observed in absorption or emission
spectra [13,57]

Ln(lll) Transition A [nm]
Pr 3E, Z3H, 1920
Nd Gy =y 578
*Hy )y, F5p =g 806
4G7/2,3K13/2 _4|9/2 521
Sm “F]/274|E3/2 _6|—|5/2 1560
Eu °D, - F, 465
°D, - F, 535
°D, - F, 613
Gd 6Ps/276P7/2 _857/2 308
Dy 6Fn/z _6H15/2 1300
4G11/2’4|15/2 _6H15/2 427
Ho SHy =1, 361
Gg —lg 452
Er “Giijp = Hisp 379
2Hﬂ/z _4|15/2 521
Tm 1(34 _3|—|6 469
3H4 _3H6 787
3F, —3H, 1695

with Equation 1.62 it is possible to write Equation 1.74 for the electric dipole moment .

2F
(AoBoluAaBo) = > ——"—=(AoAdVIBoBs )y (1.74)
b (Eb - Ea)

(Ao| and |Aa) are the ground and excited states of the metal ion, respectively, which perturb
the (By| ground and |B,) excited states of the ligand. u,, is the electric dipole moment of the
ligand transition influenced by the Coulombic interaction V between the f orbitals and
the ligand B. The dynamic coupling contributes then to the , Judd—Ofelt parameter, if the
crystal field potential has crystal field terms with k odd (k=3).

1.3.13 Emission Efficiency and Rate Constants

The emission efficiency is given by the quantum yield of luminescence ¢, which is simply
the ratio of emitted photons, p,,,, to photons absorbed by the sample, p,;s, as shown in
Equation 1.75.

qs — pem (1.75)
Pabs
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In the case of lanthanides, following direct excitation of the metal ion, the efficiency of
emission is called the intrinsic emission efficiency cﬁfﬁ, which is directly related to the
overall rate at which the emissive state is depopulated through radiative R and non-radiative
NR pathways, k., =kg+ kng, and the radiative rate constant, kg, or their corresponding

lifetimes, 7., and 7z, as shown in Equation 1.76.

In _ kg _ kg _ Texp
n —7 |1 -
kr +kng  keyp TR

(1.76)

The experimentally observed excited state lifetime reflects the contribution of all processes,
which lead to the deactivation of the excited state, both radiative and non-radiative.

Equation 1.72 above relates the radiative lifetime to the magnetic dipole-allowed
transition of Eu(IIl). It is therefore straightforward to determine experimentally, for this
ion, 7 and therefore the intrinsic emission efficiency.

1.4 Sensitisation Mechanism

1.4.1 The Antenna Effect

Due to the forbidden nature of the f-f transitions, for many applications the direct excitation
of the lanthanide ion is not desirable, as it requires the use of high intensity sources. It is
therefore more efficient to promote the emission through an appended sensitiser or antenna.
The antenna effect, illustrated in Fig. 1.10, relies on a sensitiser to harvest energy, for
example through photon absorption, which leads to population of an excited single state 'S.
In the presence of a heavy atom, intersystem crossing ISC is facilitated, which leads to
population of a triplet excited state 3T. This state is usually long-lived and is capable
therefore of energy transfer ET to the lanthanide ion’s emissive f excited state. If the
emissive state is too close in energy to the triplet state, back energy transfer BT occurs.

15
Tt Te—-
\\ ~-
e BT s

\ 3T X :\

E‘::\BT \

W N

Abs | Fl NR \\\\_\Lf
Ph NR
L NR
GS

Figure 1.10 Modified Jablonski diagram illustrating the antenna effect. Abs — absorption, FI -
fluorescence, Ph — phosphorescence, L — luminescence, ISC — intersystem crossing, ET — energy
transfer, BT — back energy transfer, NR — non-radiative deactivation, 1S — first excited singlet
state, °T — lowest excited triplet state, GS — ground state, " — emissive f excited state
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Fluorescence Fl and phosphorescence Ph compete for deactivation of the singlet and triplet
states, respectively, and non-radiative processes NR can also lead to deactivation of all
excited states. Although it is usually assumed that the energy transfer occurs from the triplet
excited state due to the favourable intersystem crossing in the presence of the heavy
atom [61], several cases have been reported in which the energy is transferred from the
singlet excited state directly to the emissive f level [62—-66]. It has also been shown that
sensitisation through metal to ligand charge-transfer states of coordinated transition metal
complexes or intra-ligand charge-transfer states are viable pathways to promote lanthanide-
centred emission [67].
The overall efficiency of sensitised emission ([)ﬁn is given by Equation 1.77.

én = ¢rsc X Per X 45%2 = Pyens X gﬁ (1.77)

The efficiency of intersystem crossing ¢;¢- and efficiency of energy transfer ¢; combine to
give the efficiency of sensitisation ¢,,,,. In the case of europium, where z, (Equation 1.72)
can be obtained from the integrated emission spectrum and ¢%" can be estimated with
Equation 1.76, it is therefore possible to experimentally determine the efficiency of
sensitisation ¢,,,;.

1.4.1.1 Singlet and Triplet States and Intersystem Crossing

The relative positions of the singlet and triplet states are important, as they can help
influence the efficiency of the intersystem crossing as well as the energy transfer and
magnitude of back energy transfer. Work done by Latva et al. [68] indicates that the position
of the lowest triplet state relative to the emissive state of the Ln(IIl) ion is important for the
efficiency of the energy transfer. From their survey of 41 different ligands, these authors
conclude that for Eu(IIT) good energy transfer happens if the triplet to f* gap is in the range
2500-4000 cm_l, with emission efficiencies in the range 15-38%. Nonetheless, an emission
efficiency of 12% was observed for a complex with AE ~9000cm™', and an emission
efficiency of 11% was observed for another complex with AE = 1000 cm™". In the case of
Tb(III), emission efficiencies in the range 21-58% were observed for AE in the range 2000—
4300 cm™. For this metal ion, with its emissive *D , state at 20450 cm™!, substantial energy
back-transfer was observed if AE<1850cm™".

In the course of the pioneering work on sensitised luminescence, Yuster and Weissman
studied the promotion of intersystem crossing due to spin—orbit coupling with heavy
atoms [69]. They found that dibenzoylmethanide coordinated to the non-emissive La, Lu
and Gd displayed different efficiencies of intersystem crossing, as seen by different ratios of
fluorescence versus phosphorescence intensity and changes in phosphorescence lifetimes,
directly related to spin—orbit coupling and to the magnetic moment of the lanthanide ion.

The lifetime 7('S) of the singlet excited state is given by Equation 1.78.

1
]
(tS)=——"""— 1.78
(5) kng + kr + kisc (1.78)

kg 1s the non-radiative decay rate, while k; is the radiative decay rate and k;g¢ the rate
of intersystem crossing (see Fig. 1.10). The lifetime z(*T) of the triplet excited state is
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given by Equation 1.79.

1
(CT)y=——— 1.79
CT) Ko + o (1.79)

kg 1s the non-radiative decay from the triplet state back to the singlet ground state and kpy, is
the radiative phosphorescence decay rate.

The emission efficiencies for the fluorescence ¢r; and phosphorescence ¢p;, can then be
defined by Equations 1.80 and 1.81, respectively.

kri

= 1.80
knr + kisc + kg (1.80)

dr

_ kpn + kisc
(kng + kpp)py(kisc + krr + kng)py

bpn (1.81)

1.4.1.2 Ligand to Metal lon Energy Transfer Mechanisms

As mentioned above, sensitised luminescence is the process by which lanthanide ions emit
following absorption of light by a coordinated ligand. During this process the absorbed
energy has to be transferred to the lanthanide ion. In general, energy transfer between a
donor D and an acceptor A will follow one of two mechanisms, one involving electron
transfer, also called Dexter energy transfer [70], and the other involving dipole—dipole
exchange, also known as Forster energy transfer [71], represented in Fig. 1.11 [72].

Due to the lack of overlap of the 4f orbitals with the ligand orbitals, it is generally
accepted that the energy transfer occurs through the latter for lanthanide ions and so only the
Forster mechanism will be briefly discussed in the following. However, in the case of
lanthanide ions such as europium and ytterbium, which are easily reduced, electron transfer
and phonon-assisted mechanisms have been invoked [73,74].

Forster or Dipole-Dipole Energy Transfer For systems in which molecules are present
that are capable of absorbing and emitting energy and energy transfer is observed between
donors and acceptors, Forster postulated that the decrease in excitation of the donor occurs
in parallel with the increase in emission of the acceptor, which is consistent with a dipole—
dipole exchange mechanism. This is different from a sequential process in which the donor
emits and its emission wavelengths are reabsorbed by the acceptor [71].

When donors and acceptors are present in the system and the former are de-excited while
the latter absorb energy, the rate constant for energy transfer kp_4 between donor D and
acceptor A is given by Equation 1.82.

o

[ ro0rea) % =

0

161.9 k2
a4 NzoR®

161.9 «2

kp_a =

R is the distance between donor D and acceptor A, n is the refractive index of the solution, 7,
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Figure 1.11 Pictorial representation of energy transfer between donor D and acceptor A
through the Férster and Dexter mechanisms

is the natural radiative lifetime of the donor in absence of the acceptor and N is Avogadro’s
number. The overlap integral J(v) is determined through integration of the absorption
spectrum of the acceptor &4(v), in units of cm™! M_l, and the emission spectrum of the
donor fp(v), in units of cm™', normalised to an area of 1.0. Finally, since dipole-dipole
interactions depend on molecular orientation, the orientation factor x is present in this
equation [71]. For solutions in which molecular positions are averaged due to random
motion, k” is usually equal to two-thirds [75]. From this equation it follows that the energy
transfer depends on R™°, and therefore Forster energy transfer is a long-range interaction
which requires overlap of emission spectrum of the donor and absorption spectrum of the
acceptor, but does not require physical contact between the donor and acceptor. The Forster
distance Ry, which is the maximum donor—acceptor distance for which energy transfer is
possible, is given by Equation 1.83 [71].

s /300070c2J (V)
Ry= (| ———~ 1.83
0 \| 8*n?N2L} (1.83)

Here, c is the speed of light in a vacuum and v is the frequency at which absorption and
emission spectra intersect.
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Figure 1.12 Radiative transitions of Eu(lll) and non-radiative quenching through O—H and
O—-D bonds

1.4.2 Non-Radiative Quenching

As shown in Fig. 1.11, non-radiative quenching pathways are present at several places of the
sensitisation process and lead to overall low emission efficiency of sensitised emission.
In the case of intrinsic Ln(III) ion emission, the smaller the gap between the emissive state
and the highest sublevel of the ground-state manifold, the easier it is to non-radiatively
quench the emission. This is shown in Fig. 1.12 for Eu(III), where the gap between the 5D0
and the 7F6 states is approximately 12000cm™". It follows that the quenching of the
emissive state is easily accomplished through three vibrational quanta of the O—H bond,
with a vibrational energy of 3600 cm™". If instead the bond is O-D, with a vibrational energy
of 2200 cm™, five vibrational quanta are needed, and the process is less efficient.

Table 1.22 summarises the number of phonons necessary to bridge the gap AE between
an excited Ln(IIl) state and the highest energy sub-level of the ground-state manifold for
H20 and D20

Table 1.22 Vibrational bridging of the AE gap for different Ln(ill) ions by O—H and O—D bonds
and typical radiative lifetimes t

Number of phonons 7 [ms]
Ln AE [em™'] OH oD H,O D,O
Gd 32100 9 15 2.3 n.a
Tb 14 800 4 7 0.47 3.8
Eu 12300 34 5-6 0.11 4.1
Dy 8850 2-3 34 0.002 0.06
Sm 7400 2 3 0.002 0.08




3GCHO1

09/11/2014 13:44:51  Page 45

Introduction to Lanthanide lon Luminescence 45

Horrocks and co-workers took advantage of this and derived an empirical equation,
which allows the determination of the number of water molecules coordinated to Eu(IIT) and
Tb(III) by comparing emission lifetimes in water and deuterated water. This will be further
discussed in Chapter 2 [76,77].

In addition to O—H other bonds, such as N—H (3300 cm_l) and C—H (2900 cm_l), also
contribute to vibrational quenching of Ln(IlI)-centred emission.

Since the non-radiative quenching processes are vibrationally mediated, they are
temperature dependent and the temperature dependence of the rate constants is described
by an Arrhenius-like Equation 1.84.

E
In (ke — ko) =1In A —R—/} (1.84)

ko is the rate constant at 0 K, which can be approximated by the rate constant measured
experimentally at 4 K or 77K and E, is the activation energy for the quenching process.
This can be used, for example, to determine the activation energy for energy back-transfer
from the emissive Ln(IIl) state to the triple state. Charbonniere et al. determined an
activation energy of 180cm™" for the back-transfer from the 5D4 level of Tb(II) to the
triplet state of a calixarene located at 2400 cm ™" [78]. The authors hypothesise that the back-

transfer is mediated by Ln—O vibrations in the complex, which occur at around 220 cm™".
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Abbreviations

'S first excited singlet state
3T lowest excited triplet state
A acceptor

AOM  angular overlap model
BT back energy transfer

CN coordination number
D donor

ED electric dipole

ET energy transfer

F1 fluorescence

GS ground state

ISC intersystem crossing
L luminescence

Ln lanthanide

MD magnetic dipole
NR non-radiative
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PCEM point charge electrostatic model

Ph
R

phosphorescence
radiative

SOM  simple overlap model
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