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1.1 History of Lanthanide Ion Luminescence

After the isolation of a sample of yttrium oxide from a new mineral by Johan Gadolin in
1794, several of the lanthanides, namely praseodymium and neodymium, as well as
cerium, lanthanum, terbium and erbium were isolated in different degrees of purity [1].
It was only after Kirchhoff and Bunsen introduced the spectroscope in 1859 as a means of
characterising elements that the remaining lanthanides were discovered and the already
known ones could be obtained in pure form [2]. Spark spectroscopy provided the means
to finally isolate in pure form the remaining lanthanides [3–5]. As will be discussed
below, the 4f valence orbitals are buried within the core of the ions, shielded from the
coordination environment by the filled 5s and 5p orbitals, and do not experience
significant coupling with the ligands. Therefore, the electronic levels of the ions can
be described in an analogous way to the atomic electronic levels with a Hamiltonian in
central field approximation with electrostatic Coulomb interactions, spin–orbit coupling
and finally crystal field and Zeeman effects added as perturbations. All these perturba-
tions lead to a lifting of the degeneracy of the electronic levels and transitions between
these split levels are experimentally observed [6]. These transitions, however, are
forbidden by the parity rule, as there is no change in parity between excited and ground
state. That the emission was nonetheless seen puzzled scientists for a long time [7]. Only
when Judd and Ofelt independently proposed their theory of induced electric dipole
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transitions [8,9] could the appearance of these transitions be satisfactorily explained. As
the transitions are forbidden, the direct excitation of the lanthanide ions is also not easily
accomplished, and this is why sensitised emission is a more appealing and energy
efficient way to promote lanthanide-centred emission. While the ability of the lanthanide
salts to emit light was key to their isolation in pure form, sensitised emission was first
described by S.I. Weissman only in 1942 [10]. This author realised that when complexes
of Eu(III) with salicylaldehyde and benzoylacetonato, as well as other related ligands,
were irradiated with light in the wavelength range in which the organic ligands absorb,
strong europium-characteristic red emission ensued. Weissman further observed that the
emission intensity was temperature and solvent dependent, as opposed to what is seen for
europium nitrate solutions [10]. After this seminal work, interest in sensitised lumines-
cence spread through the scientific community, as the potential application of lanthanides
for imaging and sensing was quickly recognised [11,12].

1.2 Electronic Configuration of the +III Oxidation State

1.2.1 The 4f Orbitals

The lanthanides’ position in the fourth period as the inner transition elements of the
periodic table indicates that the filling of the 4f valence orbitals commences with them.
The electronic configuration of the lanthanides is [Xe]4fn6s2, with notable exceptions for
lanthanum, cerium, gadolinium and lutetium, which have a [Xe]4fn�15d16s2 configura-
tion. Upon ionisation to the most common +III oxidation state, the configuration is
uniformly [Xe]4fn�1. La(III) therefore does not possess any f electrons, while Lu(III) has a
filled 4f orbital. While the 4f orbitals are the valence orbitals, they are shielded from the
coordination environment by the filled 5s and 5p orbitals, which are more spatially
extended, as shown in Fig. 1.1, which displays the radial charge density distribution for
Pr(III) [13]. Therefore, lanthanides bind mostly through ionic interactions and the ligand
field perturbation upon the 4f orbitals is minimal. Nonetheless, as will be discussed
below, symmetry considerations imposed by the ligand field affect the emission spectra of
the lanthanide ions.

1.2.2 Energy Level Term Symbols

It is usual to describe the configurations of hydrogen-like atoms or ions, that is with only one
electron, in terms of the quantum numbers n, l, ml, s and ms. In polyelectronic atoms and
ions, exchange and pairing energies lead to different configurations, or microstates, with
different energies, which are described by new quantum numbers, the total orbital angular
momentum quantum number L and its projection along the z axis, the total magnetic orbital
angular momentum ML, and the total spin angular momentum quantum number S, often
indicated as the spin multiplicity, 2S+1, as well as its projection along the z axis, the total
magnetic spin quantum number MS. In the case of heavy elements, such as lanthanides,
coupling of the spin and angular momenta is seen, and an additional quantum number, J,
the spin–orbit coupling or Russell–Saunders quantum number, is commonly utilised. As
will be mentioned below, intermediate coupling for lanthanides is more correct, but the
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Russell–Saunders formalism is simple to use and will be carried through this chapter. Term
symbols with the format 2S�1LJ , which summarise the quantum number information, are
assigned to describe the individual microstates. For a polyelectronic atom or ion with i
electrons,

L �X
i

li; ML � �L; . . . ; L

S �X
i

si; si � 1=2

and

J � L � S; L � S � 1; . . . ; jL � Sj:
Term symbols can be obtained by determining the microstates, or allowed combinations
of all electrons described by quantum numbers, of the atom or ion under consideration
and methods to do it is can be found in textbooks [14,15]. Since multiple combinations of
electrons are allowed, and therefore many microstates are present, Hund’s rules are
followed for determination of the ground state. The ground state will have the largest spin
multiplicity and the largest orbital multiplicity corresponding to the largest value of L.
Finally, if S and L are equal for two states, the ground state will correspond to the largest
value of J, if the electron shell is more than half-filled, or an inverted multiplet and the
smallest value of J, if the orbital is less than half-filled, which is a regular multiplet. The
ground state term symbols for fn (n= number of electrons in the f shell) configurations are
shown in Table 1.1.
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Figure 1.1 Radial charge density distribution of Pr(III). Reproduced from [13] with permission
from Elsevier
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A complete diagram, showing the ground and excited states of all lanthanide ions in the
+III oxidation state with corresponding term symbols, is displayed in Fig. 1.2.
Table 1.2 summarises the most commonly observed emission transitions for the

emissive Ln(III) ions.

Table 1.1 Ground state term symbols for fn

electronic configurations

Configuration Term

f0/f14 1S0
f1/f13 2F5=2=

2F7=2
f2/f12 3H4=

3H6
f3/f11 4I9=2=

4I15=2
f4/f10 5I4=

5I8
f5/f9 6H5=2=

6H15=2

f6/f8 7F0=
7F6

f7 8S7=2

Table 1.2 Most common emissive f-f transitions of Ln3+ [16–28]

Ln Transition λ [nm]

Pr 1D2 ! 3F4
1D2 ! 1G4
1D2 ! 3HJ� J � 4; 5�
3P0 ! 3HJ� J � 4 � 6�
3P0 ! 3FJ� J � 2 � 4�

1000
1440
600, 690
490, 545, 615, 640,
700, 725

Nd 4F3=2 ! 4IJ� J � 9=2 � 13=2� 900, 1060, 1350

Sm 4G5=2 ! 6HJ� J � 5=2 � 13=2�
4G5=2 ! 6FJ� J � 1=2 � 9=2�

560, 595, 640, 700, 775
870, 887, 926, 1010, 1150

Eu 5D0 ! 7FJ� J � 0 � 6� 580, 590, 615, 650, 720, 750, 820
Gd 6P7=2 ! 8S7=2 315

Tb 5D4 ! 7FJ� J � 6 � 0� 490, 540, 580, 620, 650, 660, 675
Dy 4F9=2 ! 6HJ� J � 15=2 � 9=2�

4I15=2 ! 6HJ� J � 15=2 � 9=2�
475, 570, 660, 750
455, 540, 615, 695

Ho 5S2 ! 5IJ� J � 8; 7�
5F5 ! 5IJ�J � 8; 7�

545, 750
650, 965

Er 4S3=2 ! 4IJ� J � 15=2; 13=2�
4F9=2 ! 4I15=2
4IJ� J � 9=2; 13=2� ! 4I15=2

545, 850
660
810, 1540

Tm 1D2 ! 3F4;
3H4;

3FJ� J � 3; 2�
1G4 ! 3H6;

3F4;
3H5

3H4 ! 3H6

450, 650, 740, 775
470, 650, 770
800

Yb 2F5=2 ! 2F7=2 980
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1.3 The Nature of the f-f Transitions

1.3.1 Hamiltonian in Central Field Approximation and Coulomb Interactions

The behaviour of an electron is described by the wave function ψ , which is a solution of the
Schrödinger equation 1.1.

Hψ � Eψ (1.1)

This equation only has an exact solution for systems with one electron, but for polyelec-
tronic systems with N electrons, the solution can be approximated by considering that each

Figure 1.2 Diagram of energy levels with corresponding term symbols for Ln(III) [16]
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electron is moving independently in a central spherically symmetric field U(ri)/e of the
averaged potentials of all other electrons [6]. The Hamiltonian HCFA for this central field
approximation is shown in Equation 1.2.

HCFA �
XN
i�1

�ħ2
2m
r2 � U ri� �

� �
(1.2)

ħ is the reduced Planck constant, m the mass and the Laplace operator is given by
Equation 1.3.

r2 � @2

@x2
� @2

@y2
� @2

@z2
(1.3)

The Schrödinger equation can thus be written as shown in Equation 1.4.

XN
i�1

�ħ2
2m
r2 � U ri� �

� �
Ψ � ECFAΨ (1.4)

In the central field approximation, solutions can be chosen such that the overall wave-
function and energy of the system are sums of wavefunctions and energies of one-electron
systems, as shown in Equation 1.5.

Ψ �XN
i�1

ψ i a
i

� �
(1.5a)

ECFA �
XN
i�1

Ei (1.5b)

ai stands for the quantum numbers n, l and ml which describe the state of the electron in the
central field. By introducing the polar coordinates r, θ and ϕ instead of the Cartesian
coordinates x, y and z, one can separate each one-electron wave function into its radial Rnl

and angular Ylml
components, as shown in Equation 1.6.

ψ i a
i

� � � 1
r
Rnl r� �Ylml θ;ϕ� � (1.6)

Since Rnl is a function of r only, it depends on the central field potential U(ri). A solution to
this wave function, shown in Equation 1.7, is approximated and depends on the form of the
central field.

Rnl�r� � � 2Z
na0

� �3 �n � l � 1�!
2nfn � lg3

" #1=2

e�ρ2ρlL2l�1n�l �ρ� (1.7)

with ρ � 2Z
na0

r and a0 � h2

4π2μe2, where a0 is the Bohr radius and μ the reduced mass. This

expression also includes the Laguerre polynomials L2l�1n�l �ρ� shown in Equation 1.8.

6 Luminescence of Lanthanide Ions in Coordination Compounds and Nanomaterials
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L2l�1n�l �ρ� �
Xn�l�1

k�0 ��1�k�1 f�n � l�!g2
�n � l � 1 � k�!�2l � 1 � k�!k! ρ

k (1.8)

The angular wave functions, which are Laplacian spherical harmonics, on the other hand,
are similar to the one-electron wave function and can thus be solved. Their expression is
given in Equation 1.9.

Ylml θ;ϕ� � � �1� �m 2l � 1� � l � mlj j� �!
4π l � mlj j� �!

� �1
2

Pml
l cos θ� �eimlϕ (1.9)

Pml
l (cos θ) are the Legendre functions shown in Equation 1.10.

Pml
l cos θ� � � �1 � cos2 θ�ml=2

2ll!

dml�l
d cosml�lθ �cos

2θ � 1�l (1.10)

Relativistic corrections to the Schrödinger equation lead to the introduction of a spin
function δ(ms, σ), where σ is a spin coordinate andms is the magnetic spin quantum number,
to the one electron wave function in Equation 1.6, which then takes the shape shown in
Equation 1.11.

ψ n; l;ml;ms� � � δ l; n;ml;ms� �Rnl r� �Ylml θ;ϕ� � (1.11)

Equation 1.5a can now be rewritten as Equation (1.12).

Ψ �XN
i�1

ψ i α
i

� �
(1.12)

While the two equations look similar, in Equation 1.12 αi stands for the four quantum
numbers n, l, ml and ms, which describe the state of each i of the N electrons. These
permutate to generate equally valid states following Pauli’s exclusion principle, to yield
anti-symmetric wave functions in the central field, which are solutions to the Schrödinger
equation (Equation 1.4).

The lack of perturbations to the Hamiltonian in the central field approximation results in
high degeneracy D (Equation 1.13) of the f electron configurations.

D � 4l � 2� �!
N! 4l � 2 � N� �! �

14!
N! 14 � N� �! for l � 3 (1.13)

The Hamiltonian for the perturbation introduced by the potential energy Hpot felt by all
electrons in the field of the nucleus corrected for the central spherically symmetric field is
given by Equation 1.14.

Hpot �
XN
i�1

�Ze2
ri
� U ri� �

� �
(1.14)

Introduction to Lanthanide Ion Luminescence 7
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Ze is the nuclear charge, ri the position coordinates of electron i and U(ri) the spherical
repulsive potential of all other electrons experienced by electron i moving independently in
the field of the nucleus.
The repulsive Coulomb energy between pairs of electrons is an important perturbation to

the central field approximation and its Hamiltonian HCoulomb is given by Equation 1.15.

HCoulomb �
XN
i<j

e2

rij
(1.15)

e is the charge of the electron and rij is the distance between electrons i and j.
By applying HCoulomb to the wave function of the unperturbed system, it can be shown

that the electrostatic repulsion energy EER of the system is given by Equation 1.16.

EER �
X

k�2;4;6
f kF

k (1.16)

Here, k is an integer of values 2, 4 and 6, fk are the coefficients representing the angular part
of the wave function [29] and Fk are the electrostatic Slater two-electron radial integrals
given by Equation 1.17.

Fk � 4π� �2e2 ∫
∞

0
∫
∞

0

rk<
rk�1>

R2
nl ri� �R2

n0l0 rj
� �

r2i r
2
j dridrj (1.17)

r< is the smaller and r> the larger of the values of ri and rj. Fk instead of the Slater integrals
are often indicated, for which:

F2 � F2=225
F4 � F4=1089
F6 � F6=7361:64

In the case of hydrogenic wave functions the following relationships are valid [30].

F4 � 0:145 F2 F6 � 0:0164 F2

These show that the values of Fk decrease as k increases. Values of F2 for the configurations
f 2 to f 13 are tabulated in Table 1.3 and show that they increase with increasing atomic
number, as the inter-electronic repulsion is expected to increase.
The fk angular coefficients are hydrogen-like and can be determined from

f k � �2l � 1��l � jml j�!
2�l � jml j�!

�2l´ � 1��l´ � jmĺ j�!
2�l´ � jmĺ j�! ∫

π

0
fPml

l �cos θi�g2Pk
0�cos θi�sin θidθi

� ∫
π

0
fPml´

l´ �cos θi�g2Pk
0�cos θi�sin θidθi

(1.18)

As above, Pml
l , Pml´

l´ and Pk
0 are Legendre polynomials.

8 Luminescence of Lanthanide Ions in Coordination Compounds and Nanomaterials
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In addition to the Coulomb interactions of electron–electron repulsion and electron–
nucleus attraction, further perturbations influence the energy levels of the lanthanide ions,
such as the coupling of the spin and angular momenta, commonly designated spin–orbit
coupling, the crystal field or Stark effect, and the interaction with a magnetic field or Zeeman
effect, which will be described in the following sections.

As illustrated in Fig. 1.3, by comparison to electron–electron repulsion, which leads to
energy splits on the order of 104 cm�1, and spin–orbit coupling, with splits on the order of
103 cm�1, the crystal field and Zeeman effects are small perturbations, resulting in energy
level splitting on the order of 102 cm�1 at the most [13]. The magnitude of these data
compared to the d metals is shown comparatively in Table 1.4. In the case of transition
metals, the crystal field splitting dominates the spin–orbit coupling. However, for lanthanide
ions, the crystal field splitting is almost negligible. The spin–orbit coupling is of increasing

Table 1.3 Comparison of the average magnitude of perturbations for transition metal and
lanthanide ions in cm�1 [13]

Valence configuration HCoulomb Hs�o Hcf

3dN 70 000 500 15 000
4dN 50 000 1000 20 000
5dN 20 000 2000 25 000
4fN 70 000 1500 500
5fN 50 000 2500 2000

Figure 1.3 Effect of the perturbations [Coulomb (HCoulomb), spin–orbit (Hs-o), crystal field (Hcf),
and magnetic field (HZ)] on the electron configuration of an arbitrary Ln(III) Kramers’ ion. Energy
units are arbitrary and not to scale. λ is described in Section 3.2

Introduction to Lanthanide Ion Luminescence 9
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importance for the heavier elements. However, in the case of the lanthanides, it is still
approximately an order of magnitude smaller than the Coulomb interactions and one order
of magnitude larger than the crystal field splitting; therefore an intermediate coupling
scheme, in which j-j in addition to Russell–Saunders coupling is also important, is more
correct. Nonetheless, as mentioned above, the latter formalism is utilised due to its
simplicity.

1.3.2 Spin–Orbit Coupling

The spin and angular momenta of the individual electrons couple with each other and this
coupling is increasingly important with atomic number. The HamiltonianHs-o that describes
this perturbation is given in Equation 1.19.

Hs-o �
XN
i�1

ξ ri� � si � li� � (1.19)

ri is the position coordinate of electron i, and si and li are its spin and angular momentum
quantum numbers. ξ�ri�, the single electron spin–orbit coupling constant, is given by
Equation 1.20.

ξ ri� � � ħ2

2m2c2ri

dU ri� �
dri

(1.20)

In this equation, c is the speed of light in a vacuum and ħ is the reduced Planck constant. ξ�ri�
is related to the spin–orbit radial integral ζnl by equation 1.21.

Table 1.4 Spin–orbit radial integral ζnl, spin-orbit coupling constant λ and F2 values for the
Ln3��aq� ions [25–28,31]

fN ζnl [cm
�1] λ [cm�1]a F2 [cm

�1]b

f1 625 625
f2 740 370 305
f3 884 295 321
f4 1022 250 338
f5 1157 231 364
f6 1326 221 369
f7 1450 0 384
f8 1709 �285 401
f9 1932 �386 407
f10 2141 �535 419
f11 2380 �793 440
f12 2628 �1314 461
f13 2870 �2880 444c

a f1 as Ce:LaCl3 [32] and f13 as Yb3Ga5O12 [33].
b [16]
c [30]

10 Luminescence of Lanthanide Ions in Coordination Compounds and Nanomaterials
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ζnl � ∫
∞

0

R2
nlξ r� �dr (1.21)

and to the many electron spin–orbit coupling constant λ by Equation 1.22, for S 6� 0.

λ � � ξ r� �
2S

(1.22)

Values of ζnl and λ for the hydrated Ln
3+ ions are summarised in Table 1.4, with λ positive

for a more than half-filled shell and negative for a less than half-filled shell. It can be seen
that ζnl increases with increasing number of f electrons, which corresponds to a higher
atomic number Z and a stronger spin–orbit interaction, as expected.

Hs-o will permit coupling of 2S�1L states for ΔS� 1 and ΔL� 1. This effect is shown in
Fig. 1.4, in which the energy splitting of the 4I level due to spin–orbit coupling is shown as a
function of the ratio ζnl=F2. The increased curvature of the levels shows the increasing spin–
orbit coupling. The energy levels of the reverse multiplet of Er(III) and of the multiplet of
Nd(III) are indicated by the vertical dashed lines.

The calculated compositions of the 4I multiplet levels of Nd(III) and of Er(III) are given
below.

Nd(III) Er(III)

h4I9=2
�� � �0:166�2H � � 0:984�4I � h4I15=2

�� � 0:982�4I � � 0:186�2K �
h4I11=2

�� � 0:995�4I � h4I13=2
�� � 0:995�4I �

h4I13=2
�� � �0:993�4I � h4I11=2

�� � 0:133�4G� � 0:129�2H � � 0:442�2H´� � 0:875�4I �
h4I15=2

�� � 0:993�4I � � 0:118�2K � h4I9=2
�� � �0:416�4F � � 0:342�2G� � 0:276�2G´� � 0:219�2H �
� 0:438�2H´� � 0:627�4I �

+20 Er (III)

4IJ/2

ζ
/F2

J = 9

11

13

15

Nd (III)

+10

–10

–5 0 +5

–20

0

E

Figure 1.4 The energies and splitting of the 4I level for the f3 and f11 configurations as a function
of the ratio ζnl/F2. The energy levels for the ratios �5.7 for Er(III) and 2.6 for Nd(III) are indicated
by the dashed vertical lines. Adapted with permission from [16]. Interscience Publishers:
New York, 1968
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Here, h4IJ
�� is the wave function of the spin–orbit perturbed state and �4I � is the wave

function of the unperturbed state; a state indicated by ’ is a state with the same L and S but
higher energy. Er(III), the heavier lanthanide ion, experiences a larger spin–orbit coupling,
as can be seen from the graph as well as composition of the levels above. It can further be
inferred that spin–orbit coupling leads to a splitting of the levels into terms with different J
values. Diagonalisation of the energy matrix lnαLSJ

P
iξ�ri�sili

�� ��lnα´L´S´J ´	 

allows esti-

mation of the energies of the split terms (Equation 1.23).

lnαLSJ
P

iξ�ri�sili
�� ��lnα´L´S´J ´	 
 � ��1�L�S´�jζnl ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2l � 1��l � 1�p

δJJ ´

� L S J

S´ L´ 1

( )
lnαLS

����V11
����lnα´L´S´	 
 (1.23)

δij are the Kronecker delta symbols, for which δij= 0 for i 6� j and δij= 1 for i= j. α stands for
all additional quantum numbers which describe the initial and final states of ln. The doubly
reduced matrix elements lnαLS

����V11
����lnα´L´S´	 


, containing the spin–orbit operator V11, are
tabulated [34]. The term between curly brackets is the six-j symbol, which describes the
coupling of three momenta, in this case L, S and J. Online calculators are available to
determine these, or they are tabulated [35]. From the 6-j symbol selection rules arise, as it is
only non-zero when:

ΔS � 0;�1 ΔL � 0;�1
S´ � S � 1 L´ � L � 1

ΔJ � 0

The energy of each term with respect to the barycentre of the parent term 2S�1L can be
approximated by Equation 1.24.

EJ � 1=2λ�J�J � 1� � L�L � 1� � S�S � 1�� (1.24)

Using this equation, it is possible to estimate that the 3H5 energy level of Pr
3+ (4f 2) will be

located approximately 370 cm�1 or �1λ below the barycentre of the 3H level, while the 3H6
will be 6λ or 2220 cm�1 above and the 3H4 level �5λ or 1850 cm�1 below [16]. From
Equation 1.24 it can further be concluded that the energy gap ΔE between two adjacent
levels with J´ = J+ 1 is approximated by Landé’s interval rule (see also Fig. 1.3), given in
Equation 1.25.

ΔE � λJ ´ (1.25)

Landé’s interval rule is only strictly obeyed in the case of strong LS coupling and is only
approximated in lanthanides, where intermediate coupling, consisting of interaction of
levels with the same J but different L and S, is more correct. As a consequence, the
magnitude of the intervalΔE determined through Equation 1.25 is usually more accurate for
the lower energy levels of the lighter lanthanides. Nonetheless, a good approximation
between the experimentally observed gaps and the gaps calculated by Landé’s rule is

12 Luminescence of Lanthanide Ions in Coordination Compounds and Nanomaterials
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usually seen, especially for ground-state multiplets. In the case of Pr3+ the free ion energy
levels for 3H4,

3H5 and
3H6 are located at 0, 2152 and 4389 cm

�1, respectively [16], leading
toΔE values of 2152 and 2237 cm�1 between J= 4 and 5 and J= 5 and 6, which reasonably
approximate the values of 1850 and 2220 cm�1 obtained through Equation 1.25.

1.3.3 Crystal Field or Stark Effects

When lanthanide ions are in inorganic lattices or compounds in general, in addition to the
Coulomb interactions and the spin–orbit coupling, each electron i also feels the effect of
the crystal field generated by the ligands surrounding the metal ion, in analogy to the
effect first described by Stark of an electric field on the lines of the hydrogen
spectrum [36]. This perturbation lifts the 2J+ 1 degeneracy and generates new levels
with MJ quantum numbers. Since a potential is generated by the electrons of the N
ligands, which is felt by the electrons of the lanthanide ions, the Hamiltonian can be
defined by Equation 1.26.

Hcf � �e
XN

1
V�ri� (1.26)

e is the elementary charge, V(ri) is the potential felt by electron i and ri its position.
Following the same reasoning utilised to derive Equations 1.6 and 1.12 one can express the
Hamiltonian as a function of the crystal field parameters Bk

q, which are related to the
spherical harmonics Yk

q, as shown in Equation 1.27 [37].

Hcf �
X
i;j;k

Bk
q

� 

�Ck

q�i (1.27)

The relationships between Bk
q and Yk

q are shown in Equation 1.28.

Bk
0 � ∫

∞

0

R2
nl r� �rkdr

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2k � 1

r
Yk
0

X
L

ZLe2

Rk�1
L

Bk
q � ∫

∞

0

R2
nl r� �rkdr

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2k � 1

r
Re Yk

q

X
L

ZLe2

Rk�1
L

B´kq � ∫
∞

0

R2
nl r� �rkdr

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2k � 1

r
Im Yk

q

X
L

ZLe2

Rk�1
L

(1.28)

L are the ligands responsible for the crystal field at a distance RL, Z their charge and e the
elementary charge. Often, instead of Bk

q, the equivalent structural parameters Aq
k are utilised

as shown below.

Bk
q � a � Aq

k rk
	 


(1.29)
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a is a constant for each Bk
q and Aq

k pair [29], and rk
	 


represents the average or expectation
value of rk, where r is the nucleus–electron distance of the lanthanide ion, given by

rk
	 
 � ∫

∞

0
R2
nl�r�rkdr (1.30)

Tabulated values of rk
	 


for all Ln3+ are summarised in Table 1.5.
�Ck

q�i are the related tensor operators, which transform as the spherical harmonics and
are given by

�Ck
q�i �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2k � 1

r
Yk
q i� � (1.31)

1.3.4 The Crystal Field Parameters Bk
q and Symmetry

The integer k runs in the range 0–7 and the parameters containing even values of k are
responsible for the crystal field splitting, while those with odd values influence the intensity
of the induced electronic dipole transitions (see Section 1.3.10 for more details) [8,9]. q is
also an integer and its values depend on the symmetry of the crystal field and the magnitude
of k, since |q|� k. The possible combinations of k and q for the crystal field parameters are
given in Table 1.6 and the symmetry elements contained in the crystal field parameters
are summarised in Table 1.7.
The B0

0 coefficient is notably absent from these tables; since it is spherically symmetric,
it acts equally on all fN configurations. In energy level calculations it can therefore be
incorporated into all spherically symmetric interactions and does not need to be
considered individually.

Table 1.5 Expectation values rk
	 


in a.u. [38]

r1
	 


r2
	 


r3
	 


r4
	 


r5
	 


r6
	 


Ce3+ 0.97 1.17 1.73 3.08 6.44 15.55
Pr3+ 0.93 1.08 1.55 2.65 5.36 12.53
Nd3+ 0.90 1.01 1.39 2.31 4.53 10.31
Sm3+ 0.84 0.89 1.15 1.81 3.38 7.32
Eu3+ 0.82 0.84 1.06 1.62 2.96 6.28
Gd3+ 0.79 0.79 0.98 1.46 2.61 5.45
Tb3+ 0.77 0.75 0.91 1.33 2.33 4.76
Dy3+ 0.75 0.71 0.84 1.21 2.08 4.19
Ho3+ 0.74 0.68 0.79 1.11 1.87 3.71
Er3+ 0.72 0.65 0.74 1.02 1.69 3.31
Tm3+ 0.70 0.62 0.69 0.94 1.54 2.97
Yb3+ 0.69 0.60 0.65 0.87 1.40 2.67
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Table 1.6 Values of q allowed as a function of the symmetry elements of the crystal field [30]

Symmetry element present Values of q allowed

Cn (coincident with main axis) |q|� k, but is integer of n
σh (xy-plane) Odd k)q odd or q 6�zero

Even k)q even
σv (xz-plane) No imaginary terms
i (inversion center) k even
C2́ Odd k)q 6�zero

Odd k+ |q| ) no real terms
Even k+ |q| ) no imaginary terms

Sn (coincident with main axis) Odd k)q 6�zero
Odd k+ |q| ) q 6�n-fold
Even k+ |q| ) q 6�(2x+1)n/2 (x=0, 1, 2, . . . )

Table 1.7 Symmetry elements of the crystal field parameters Bk
q [30]

q 0 1 2 3 4 5 6 7

B1
q C∞, σv σh, σv

B2
q C∞, i, C2´,

S4, σh
σv, i,
C2´

C2, i, C2́,
σh, σv

B3
q C∞, σv σh, σv C2, σv, S4 C3, σh, σv

B4
q C∞, i, C2́,

S4, σh
σv, i,
C2́

C2, i, C2́,
σh, σv

C3, i, C2́,
σv, S6

C4, i, C2́,
σh, σv, S4

B5
q C∞, σv σh, σv C2, σv, S4 C3, σh, σv C4, σv C5, σh,

σv
B6
q C∞, i, C2́,

S4, σh
σv, i,
C2́

C2, i, C2́,
σh, σv

C3, i, C2́,
σv, S6

C4, i, C2́,
σh, σv, S4

C5, i,
C2́, σv

C6, i, C2́,
σh, σv, S6

B7
q C∞, σv σh, σv C2, σv, S4 C3, σh, σv C4, σv C5, σh,

σv

C6, σv C7, σh,
σv

B´1q σh, σd,
C2́

B´2q σd, i C2, i, σh,
σd

B´3q σh, σd,
C2́

C2, C2́,
σd, S4

C3, C2́,
σh, σd

B´4q σd, i C2, i, σh,
σd

C3, i, σd,
S6

C4, i, σh, σd,
S4

B´5q σh, σd,
C2́

C2, C2́,
σd, S4

C3, C2́,
σh, σd

C4, C2́, σd C5, C2́,
σh, σd

B´6q σd, i C2, i, σh,
σd

C3, i, σd,
S6

C4, i, σh, σd,
S4

C5, i, σd C6, i, σh, σd,
S6

B´7q σh, σd,
C2́

C2, C2́,
σd, S4

C3, C2́,
σh, σd

C4, C2́, σd C5, C2́,
σh, σd

C6, C2́ C7, C2́,
σh, σd
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The expression for Hcf varies depending on the symmetry of the crystal field, as shown by
the information inTables 1.3 and 1.4. For example, if themetal ion is in a site ofC2v symmetry,
which includes two mirror planes and one C2 axis, the expression for Hcf becomes:

Hcf �
X

k�2;4;6
Bk
0C

k
0 �

X
k�2;4;6

Bk
2 Ck

2 � Ck�2
� � �X

k�4;6
Bk
4 Ck

4 � Ck�4
� � � B6

6 C6
6 � C6�6

� �
(1.32)

Complete expressions for the summations for symmetry point groups of interest in
coordination chemistry can be found for example in Reference [30].
Further discussion of the crystal field perturbation and crystal field parameters will be

continued in Section 1.3.7.
As stated, the crystal field lifts the degeneracy of the J levels. However, in the case of

Kramers’ ions, which have an odd number of electrons and for which therefore J is half-
integer, the degeneracy is not completely removed and each sub-level is two-fold degenerate
and therefore a Kramers’ doublet [39]. Nonetheless, the lifting of the degeneracy is related
to the symmetry around the metal ion, and the number of new MJ sub-levels as a function
of symmetry is summarised in Table 1.8.
In the case of the Eu(III) ion, where ground and excited state manifolds are well-

separated, this direct dependence of the number ofMJ levels on the crystal field symmetry is
often utilised to determine the point group symmetry of the metal ion in a complex or solid
state material from the emission spectra. This method of descending symmetry is performed
with the help of a diagram such as the one shown in Fig. 1.5 [41]. A similar analysis can also
be performed on the basis of absorption spectra.
By using the reasoning above, the splitting of the 4f 6 configuration of Eu3+ in Oh

symmetry will be as shown in Fig. 1.6.

Table 1.8 Number of new MJ sub-levels for a parent J term split by the crystal field in a given
group symmetry [13,40]

Symmetry Integer J

0 1 2 3 4 5 6

Icosahedral Ih 1 1 1 2 2 3 4
Cubic Oh, O, Td, Th, T 1 1 2 3 4 4 6
Hexagonal D6h, D6, C6v, C6h, D3h, C3h, D3d, D3, C3v, S6, C3 1 2 3 5 6 7 9
Pentagonal D5h, C5h, C5v, C5, D5 1 2 3 4 5 7 8
Tetragonal D4h, D4, C4v, C4h, C4, D2d, S4 1 2 4 5 7 8 10
Low D2h, D2, C2v, C2h, C2, Cs, S2, C1 1 3 5 7 9 11 13

Half-integer J

1/2 3/2 5/2 7/2 9/2 11/2 13/2 15/2 17/2

Cubic 1 1 2 3 3 4 5 6 6
Other symmetries 1 2 3 4 5 6 7 8 9

16 Luminescence of Lanthanide Ions in Coordination Compounds and Nanomaterials
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The symmetries of the individual Stark levels indicated in Fig. 1.6 can be determined as
shown in Section 1.3.9 and a complete list of the Stark level symmetries for all point groups
can be found in Reference [30].

1.3.5 Energies of Crystal Field Split Terms

Estimation of the crystal field energy levels occurs through diagonalisation of the Hamil-
tonian matrix in Equation 1.33.

ψ lnSLJMJ

��Hcf

��ψ lnS´L´J ´MJ
´

	 

(1.33)

After substituting Equation 1.26 into Equation 1.33, it can be shown that the matrix
elements are described by Equation 1.34 [29,42].

P
k;qB

k
q ψ lnSLJMJ

P
i�Ck

q�i
��� ���ψ lnSLJMJ

´
D E

� ��1�2J�MJ�S�L�k�37�2J � 1�

� 3 k 3

0 0 0

 !
J k J

�MJ q MJ
´

 !
J J k

L L S

( )
ψ lnSL Uk

�� ��ψ lnSL

	 

(1.34)

Figure 1.6 Stark levels (energies not to scale) with corresponding symmetry labels for Eu3+ in
Oh symmetry
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The terms in parentheses are 3-j symbols and the term in braces is a 6-j symbol. The first
3-j symbol indicates the coupling of the angular momenta l= 3 between final and initial
states, the second 3-j and the 6-j symbol denote the coupling of two, J and MJ, and three,
J, L and S, angular momenta, respectively. These symbols are tabulated in [35] or can be
calculated in Mathematica [43] or by using several calculators available online. While the
general formulas for the symbols are complicated, it can be shown that for the first 3-j symbol
to be non-zero the following relationship must hold:

��3 � 3
�� � k � 3 � 3 or k � 0 � 6:

The second 3-j symbol will be non-zero for: �MJ � q �MJ
´ � 0ÛMJ �MJ

´ � q and��J � J
�� � k � J � J or k � 2J and

��q�� � k:
These conditions for the 3-j symbols dictate the selection of k= 0, 2, 4, 6 for the crystal

field splitting.
The 6-j symbol will be non-zero for |J� k|� J´ � J+ k and |L´ � S|� L� L´ + S.
The doubly reduced matrix elements ψ lnSL k Uk k ψ lnS´L´

	 

are specific to a given lantha-

nide ion. It was shown that the crystal field does not affect them substantially. Therefore,
instead of calculating them for each system, the values tabulated by Nielson and Koster can
be used [34].

With all of these tabulated values, only the Bk
q needs to be determined to evaluate the

energy level splitting based on the crystal field and its symmetry.
For Pr3+, which has the valence configuration f2, in D3h symmetry the reduced matrix

elements hU4i and hU6i vanish (Table 1.9) and only hU2i needs to be evaluated. Therefore,
for the 3P2 term, with L= S= 0, J= 2, q= 0, k= 2 (see above for the discussion of the values
of q and k depending on symmetry), andMJ= 0,±1,±2, it can be shown with Equation 1.34
above that

f 2 3P2 20
��Hcf

��f 2 3P2 20
	 
 � � 1

5
B2
0

f 2 3P2 21
��Hcf

��f 2 3P2 21
	 
 � � 1

10
B2
0

f 2 3P2 22
��Hcf

��f 2 3P2 22
	 
 � 1

5
B2
0

f 2 3P2 20
��Hcf

��f 2 3P2 00
	 
 �

ffiffiffi
2

p
5

B2
0

f 2 3P2 21
��Hcf

��f 2 3P2 11
	 
 � 3

10
B2
0

etc:

Similar reasoning for the 3P0 and
3P1 terms allows the drawing of the diagram shown in

Fig. 1.7, which represents the relative energies of the crystal field split terms.

1.3.6 Zeeman Effect

As mentioned above, in the case of Kramers’ ions with non-integer value of J, the crystal
field does not completely lift the degeneracy of the J levels. This degeneracy can however
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be lifted in the presence of an external magnetic field and is often referred to as the
Zeeman effect [44]. The magnitude of the splitting is proportional to the strength of the
applied magnetic field. The expression for the Hamiltonian Hz is given in Equa-
tion 1.35 [42].

Hz � g μBB � J (1.35)

μB is the Bohr Magneton; B is the magnitude of the external magnetic field and g is Landé’s
factor (Equation 1.36) in the LS coupling scheme.

g � 1 � J J � 1� � � L L � 1� � � S S � 1� �
2J J � 1� � (1.36)

The effective magnetic moment μ is given by Equation 1.37.

μ � �μBgJ (1.37)

If the applied magnetic field is parallel to the z-axis of a crystal, the splitting energy EZ is
given by

3P2

Г2(0)

Г3(±2)

Г6(±1)

Г6(±1)

Г1(0)
0

Г1(0)

3P1

3P0

1
5B

2
0

1
5B

2
0

1
5B

2
0

–

1
10 B2

0
–

1
10 B2

0
–

3
10 B2

0

B2
0

Figure 1.7 Relative energies (not to scale) of the crystal field split 3PJ ( J=0, 1, 2) terms of Pr3+

in D3h symmetry

Table 1.9 Selected doubly reduced matrix elements ψ lnSL Uk
�� ��ψ lnS´L´

	 

for the f2 Pr3+ ion [34]

Pr3+, f2 ψ lnSL U2
�� ��ψ lnS´L´

	 

ψ lnSL U4

�� ��ψ lnS´L´
	 


ψ lnSL U6
�� ��ψ lnS´L´

	 

3P=3P �3 ffiffiffiffi

14
p

.
0 0

3P=3F
ffiffiffiffiffiffi
6=7

p � ffiffiffiffiffiffiffiffiffiffiffi
11=21

p
0

3F=3F �1=3 �1=3 �1=3
3F=3H 2=3

ffiffiffiffiffiffiffiffiffi
11=7

p ffiffiffiffiffiffiffiffiffiffiffi
65=63

p �1=3
ffiffiffiffiffiffi
14

p
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EZ � μBgB JMz

��Jz��JMz

	 

(1.38)

MZ is the quantum number associated with this perturbation. If, on the other hand,
the Zeeman interaction is anisotropic, the Hamiltonian in Equation 1.35 should be re-
written as

HZ � μB�gxBxJx � gyByJy � gzBzJz� (1.39)

with the components along the x, y and z axes designated by the appropriate subscripts.

1.3.7 Point Charge Electrostatic Model

Qualitative estimation of the Bk
q parameters and therefore of the symmetry around the metal

ion and the positions of the energy levels can be done utilising the point charge electrostatic
model (PCEM), which assumes that the electric field acting on the central metal ion is
generated by the ligands as negative point charges, and all ligands have the same charge.
These point charges are arranged according to the correct symmetry of the metal ion site.
Taking into account Equations 1.27 and 1.30, and considering that N ligands will be at a
distance RA and M ligands at a distance RB (RA<RB), Equation 1.28 can be re-written as
Equation 1.40.

Bk
0 �PN

A�1 ZLe2
rk
	 

Rk�1
A

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2k � 1

r
Yk
0�θA;ϕA� �

XM

B�1 ZLe
2 rk
	 

Rk�1
B

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2k � 1

r
Yk
0�θB;ϕB�

Bk
q �PN

A�1 ZLe2
rk
	 

Rk�1
A

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2k � 1

r
��1�qRe Yk

q�θA;ϕA�

�PM
B�1 ZLe2

rk
	 

Rk�1
B

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2k � 1

r
��1�qRe Yk

q�θB;ϕB�

B´kq �PN
A�1 ZLe2

rk
	 

Rk�1
A

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2k � 1

r
��1�qImYk

q�θA;ϕA�

�PM
B�1 ZLe2

rk
	 

Rk�1
B

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2k � 1

r
��1�qImYk

q�θB;ϕB�
(1.40)

θL and ϕL are coordinates of the ligand point charges. Since the positions of the ligands are
important to indicate the angles, and therefore the sign of the crystal field parameters, the
choice of molecular axes should follow the usual convention, in which the axis of highest
rotational symmetry coincideswith the z-axis.Also,with judicial choice of themolecular axes,
it is possible in some cases to set B´kq � 0 [30]. Finally, since the radial parts of the parameters
Bk
0 andB

k
q are the same, the ratioBk

q=B
k
0 does not have a radial component andwill be a constant

for a given symmetry. Therefore, only the Bk
0 with k= 2, 4 and 6 needs to be fit.

For example, if the metal is situated in a hypothetical D3h symmetry environment with
three equidistant ligands, the parameters of interest are given by the expression for Hcf
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below, as demonstrated in Section 1.3.4:

Hcf � B2
0C

2
0 � B4

0C
4
0 � B6

0C
6
0 � B6

6�C6�6 � C6
6�

Since the ligands span a triangle and their position angles θ/ϕ are equal to 90o/90°, 90o/120°
and 90o/330°, with the help of the tabulated spherical harmonics, and substituting in
Equation 1.40, it follows that:

B2
0 � � 32 Ze

2 r2
	 

R3

B4
0 � 9

8
Ze2

r4
	 

R5

B6
0 � � 1516 Ze

2 r6
	 

R7

B6
6 � � 3

ffiffiffiffiffiffiffiffi
231

p
32

Ze2
r6
	 

R7

By utilising a similar procedure, it can be shown that for a general prismatic polyhedron
with p axial ligands, n equatorial ligands and m ligands in the base of the prism [30]

B2
0 � Ze2

r2
	 

R3 p � n

2
� m�3cos2θ � 1�

h i

B4
0 � Ze2

r4
	 

R5 p � 3n

8
� m

4
�35cos4θ � 30cos2θ � 3�

� �

B6
0 � Ze2

r2
	 

R7 p � 5n

16
� m

8
�231cos6θ � 315cos4θ � 105cos2θ � 5�

� �
(1.41)

Some polyhedra are relatively common for lanthanide ion complexes, and they will be
discussed here in more detail. They are the square antiprism, the tricapped trigonal prism and
the monocapped square antiprism, shown below in Fig. 1.8. The metal ion is situated in the
centre of the polyhedron and the ligands, as point charges, are located at the vertices. The
proper axis of highest symmetry is chosen to coincide with the z-axis, as mentioned before.
The previous section described the expressions for the crystal field parameters for regular

polyhedra. However, most frequently the geometry around the lanthanide ion departs more
or less drastically from the regular geometry. Of the crystal field parameters, Bk

0 depends on
θ, while Bk

q depends both on θ and ϕ. Therefore, distortions of both angles will affect both
sets of parameters, while changes in ϕ will affect only the latter. When fitting the
parameters, it is common to do an initial fit at a higher symmetry and then refine at the
lower, coordination compound-appropriate symmetry.
The locations of the point charges are given in Table 1.10 and different coordination

polyhedra and their parameters are described below.
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1.3.7.1 Square Antiprism

This coordination geometry is often encountered when the metal ion has the coordination
number (CN) 8, for which p= n= 0 and m= 4. The point group symmetry is D4d, with four
ligands spanning a square above and four ligands the other square below the central ion. An
S8 improper axis of rotation coincides with the z-axis and passes through the metal ion and in
between all eight ligand point charges. The square antiprism is obtained by 22.5° clockwise
and counter-clockwise of the top and bottom faces with respect to the metal ion from a cube.
The square antiprism will be elongated when θ> 54.74° and compressed when θ< 54.74°.
The angle φ can distort from 2× 22.5° by φ, upon which the symmetry will decrease to D4.
Substituting into Equation 1.40 yields the following Bk

q parameters for a distorted square
antiprism.

z

x y

square anti-prism
CN 8, D4d

tricapped trigonal prism
CN 9, D3h

monocapped square anti-prism
CN 8, C4v

R

Figure 1.8 Common coordinat ion polyhedra for lanthanide ions, shown with the Cartesian
and polar coordinate system

Table 1.10 Angular coordinates of the ligands as point charges for the three coordination
polyhedra and distorted coordination polyhedraa

θ/φ [°] D4d®D4 D3h®D3 C4v®C4

Atoms spanning top face θ/45+φ
θ/135+φ
θ/225+φ
θ/315+φ

θ/90+φ
θ/210+φ
θ/330+φ

125.7/45+φ
125.7/135+φ
125.7/225+φ
125.7/315+φ

Atoms spanning bottom face 180� θ/45�φ
180� θ/135�φ
180� θ/225�φ
180� θ/315�φ

180� θ/90�φ
180� θ/210�φ
180� θ/330�φ

70.1/45�φ
70.1/135�φ
70.1/225�φ
70.1/315�φ

Capping atoms �� 90/30
90/150
90/270

0/0

aφ is the angle by which the bottom and top faces distort from the regular polyhedron, past the 45° angle in the case of
the square antiprism and monocapped square antiprism and 0° angle in the case of the tricapped trigonal prism.
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B2
0 � Ze2
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As can be seen from the equations above, parameters B4
4 and B

6
4 have the distortion angle φ

in their expression and are therefore indicators of the magnitude of the distortion of the
square antiprism. Along similar lines, (3cos2 θ� 1) vanishes for 54.74°, the cubic angle, and
therefore the presence of the parameter B2

0 is an indication of the distortion of the square
antiprism from the higher symmetry cube.

1.3.7.2 Tricapped Trigonal Prism

The tricapped trigonal prism is a commonly encountered coordination polyhedron for
CN 9, although often distorted. For this polyhedron p= 0 and n=m= 3. The symmetry
is D3h and the polyhedron has three atoms at the top spanning a triangular face and
three atoms at the bottom spanning another triangular face, eclipsed with the top face. A
C3 axis contains the metal ion and is collinear with the z-axis. The point charges spanning
the top and bottom faces will be at a distance RA, while the capping charges will be at a
distance RB. When the top and base faces twist by 2×φ, the symmetry decreases to D3.
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1.3.7.3 Monocapped Square Antiprism

This coordination polyhedron is a special case of the square antiprism, with p= 1, n= 0 and
m= 4, as a capping atom is added on top of the top face of the antiprism, which results in a
top face with a larger area. The symmetry around the metal ion is C4v with CN 9, with a C4

axis passing through the metal ion and the capping point charge.

B2
0 � Ze2

r2
	 

R3 12cos2θ � 11
� �

B4
0 � Ze2

r4
	 

R5 35cos4θ � 30cos2θ � 4
� �

B6
0 � Ze2

r6
	 

R7 � 1

2
� 1
2
�231cos6θ � 315cos4θ � 105cos2θ�

� �

The crystal field parameters B4
4 and B6

4, which account for the distortions from C4v

symmetry, are analogous to the square antiprismatic case.

1.3.8 Other Methods to Estimate Crystal Field Parameters

The point-charge electrostatic model is useful in illustrating how symmetry influences the
signs of the crystal field parameters Bk

q. However, it does not usually result in accurate
determinations of their magnitude and therefore other methods have been developed that
lead to a better estimation. One such approach is based on the angular overlap model AOM
developed and expanded to the f elements by Jørgensen [45]. Another approach is the simple
overlap model SOM, proposed by Malta [46].

1.3.8.1 Angular Overlap Model

The angular overlap model (AOM) considers the existence of weak covalent interactions
between the Ln(III) orbitals and the ligand orbitals which perturb the metal-based orbitals.
The perturbation is proportional to the overlap of the metal and ligand orbitals and is
evaluated in terms of the anti-bonding energy E* of the f orbital considered, as the anti-
bonding orbital is mostly metal in character. For a complex with N ligands L, MLN, this
energy is described by Equation 1.42 [47].

E* � eλ
XN
j�1
�Fl

λ�2 (1.42)

eλ are quantities that depend on the radial functions of the metal M and the ligands and on
the bond distances between the two and the nature of the interaction [λ= 0 (σ), 1 (π)], l
is the angular momentum quantum number, and Fl

λ are the angular overlap integrals.
For an ML9 system with D3h symmetry, for which was shown above that
Hcf � B2

0C
2
0 � B4

0C
4
0 � B6

0C
6
0�B6

6�C6�6 � C6
6�, the energies of the f orbitals in units of eλ

are shown in Table 1.11. The energies for other symmetries can be found in Reference [47].

Introduction to Lanthanide Ion Luminescence 25



3GCH01 09/11/2014 13:44:18 Page 26

Based on these energies, the splitting pattern shown in Fig. 1.9 for the f orbitals of
complex ML9 in D3h symmetry can be deduced.
The Bk

qC
k
q parameters can be expressed in terms of the AOM eλ [48], and for the B2

0C
2
0 in

D3h symmetry [49].

B2
0C

2
0 � 3

7

ffiffiffiffiffi
5π

p �2f 1 � 3�
2f 1

� �
� ��1 � 4f 2 � 6f 2sin

2θ�eσ1

with f 1 � eσ1
eπ1
� eσ2

eπ2
� eσ

eπ
and f 2 � eσ2

eσ1
� eπ2

eπ1
, for the ligands at distances R1 and R2.

Using these considerations, for Pr(III) in LaCl3, Urland calculated B2
0C

2
0 � 164 cm�1,

which compares well with the experimental value of 150 cm�1 [49].

1.3.8.2 Simple Overlap Model

In the simple overlap model (SOM), the crystal field experienced by the 4f electrons is
generated by point charges located in small regions around the middle distance between
the lanthanide ion and its ligands. These regions of charge are not necessarily positioned
exactly in between the lanthanide ion and the ligands; therefore, a correction factor, βL,
which is given by Equation 1.43, is introduced to account for this asymmetry.

βL � 1
1 � ρL

(1.43)

Table 1.11 Energies of the f orbitals in an ML9 complex in units of eλ for D3h symmetry [47]

f Orbital Symmetry eσ eπ

z3 a´2́ 3/16 117/32
xz2 e´ 117/64 213/128
yz2

z(x2−y2) e´´ 45/32 195/64
xyz
x(x2−3y2) a ´1 75/32 45/64
y(3x2−y2) a ´2 0 135/32

Figure 1.9 Splitting pattern based on the AOMof the f orbitals of complexML9 inD3h symmetry
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In this equation, ρL is an additional correction factor to the position of the region of charge.
A positive sign indicates that this region is shifted towards the ligand, which is usually
observed for small electronegative species such as O and F. The negative sign will be used
when the ligand is bulkier and contains atoms such as N and Cl and the region of charge is
displaced towards the lanthanide ion. In initial publications on LaCl3:Nd

3+ ρL was set at
0.05 and therefore βL= 1.1 with the region of charge towards the lanthanide [46], and on
YOCl:Eu3+ βO= 0.95 and βCl= 1.05, showing the centroid shifted towards O for the Ln–O
interaction and towards Ln for the Ln–Cl interaction, respectively [50]. It was later
suggested that ρL can be estimated using Equation 1.44 [51].

ρL � 0:05
R0

RL

� �3:5

(1.44)

R0 corresponds the shortest M-L bond and RL is the M-L bond distance for the ligand L of
interest.

The charge of the region between the ligand and the lanthanide is equal to –gLeρ, where ρ
is proportional to the magnitude of orbital overlap between lanthanide and ligand, e is the
electron charge and gL is the ligand charge factor. Instead of the ligand charge ZL, which is
used in the PCEM, in the SOM gL is used in the estimation of Bk

q (Equation 1.40). Both
crystal field parameters are related by Equation 1.45.

Bk
q�SOM� � ρ�2β�k�1Bk

q�PCEM� (1.45)

The success of the SOM for estimation of the crystal field parameters can be seen from the
data summarised in Table 1.12, which shows the phenomenological Bk

q compared to the
numbers obtained through the PCEM, SOM, and through AOM for an acetylacetonato
complex of Nd(III).

1.3.9 Allowed and Forbidden f-f Transitions

Optical transitions within the 4f shell arise due to interaction of the electric and magnetic
components of the electromagnetic radiation with the f electrons and are therefore either
electric or magnetic dipole transitions (ED or MD), respectively. The electric dipole
transition can be considered a linear displacement of charge and its direction is reversed
through inversion, meaning it has odd parity. The magnetic dipole transition, on the other

Table1.12 Comparisonof experimental Bk
q [cm

�1]with values calculatedwith PCEM,AOMand
SOM for Nd(btmsa)3 [52]

Bk
q

Phenomenological PCEM AOM SOM

B2
0 �2912 �4220 �1834 �2964

B4
0 +920 +370 +1391 +821

B6
0 �516 �61 �304 �427

B6
6 ±331 ±154 ±512 ±1083
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hand, corresponds to a rotational displacement of charge, which, upon inversion, does not
change its sense of rotation and therefore has even parity. Which transitions are allowed and
which are forbidden is determined by selection rules.

1.3.9.1 Empirical Parameters Describing Optical Transitions

In absorption spectra the peak maxima is reported either as absorbance A or as molar
absorptivity ε, which is independent of sample concentration, and they are related as shown
in Equation 1.46.

A � εcl (1.46)

c is the sample concentration and l the path length covered by the light through the
sample.
In the case of narrow absorption bands, due to signal-to-noise considerations, it is

better to report the area of the peak
R
ε�ν�dν (ν are wavenumbers in cm�1), which is

proportional to the peak intensity. Two other quantities, which can be reported instead of
ε, are the transition dipole strength D and the oscillator strength P, to which they are
related by the following two equations [53].

D � 9 � 10�39∫
ε�ν�
ν

dν (1.47)

P � 4:32 � 10�9∫ε�ν�dν � 4702 � 1029 � ν0 � D (1.48)

ν0 is the wavenumber at absorption maximum.
For transitions forbidden by selection rules, P � 1 and, in the case of the Ln(III), P ∼

10�6 esu2 cm2 for MD allowed and ED forbidden transitions, with εmax< 10 cm�1 M�1,
which is habitually on the order of 1 cm�1 M�1.
Correction factors for the dielectric medium, represented by its refractive index n, and

for the degeneracy 2J+ 1 of the terms are included, since both influence the transition
dipole and oscillator strengths. The corrected expressions are given in Equations 1.49
and 1.50.

Dcorr: � χ

2J � 1
D (1.49)

Pcorr: � χ

2J � 1
P (1.50)

χ are the dielectric medium correction factors for ED and MD transitions. For absorption,
these are given by Equation 1.51.

χED � �n
2 � 2�2
9n

χMD � n
(1.51)
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For emission, the equations are:

χED � n2�n2 � 2�2
9

χMD � n3
(1.52)

Since many f-f transitions of the Ln(III) have both ED and MD components, the overall
experimental dipole strength is given by Equation 1.53.

Dexp � 1
2J � 1

�χMDDMD � χEDDED� (1.53)

1.3.9.2 The Spin Rule

For a transition to be spin allowed, the spins of excited and ground state need to be the same.
In the case of several f-f transitions of the lanthanide ions, these are accompanied by a
change in spin and are therefore strictly forbidden. However, as mentioned previously, due
to the spin–orbit coupling the total spin quantum number S is no longer completely valid,
and therefore this rule is relaxed [53].

1.3.9.3 The Parity Rule

The parity or Laporte rule states that for an optical transition to be allowed, the parity
between final and initial states needs to change [53]. Utilising group theory arguments, it can
be concluded that, for the transition to be allowed, the totally symmetric irreducible
representation Γ1 (Bethe’s symbol, equivalent to Mulliken’s symbols A1) needs to be
contained in the direct product shown in Equation 1.54.

Γi 
 Γ 
 Γf (1.54)

Γi and Γf are the symmetry labels of the initial and final states and Γ is the symmetry of the
operator of the transition being considered. In the case of an electric dipole transition, in
which interaction of the electric part of the electromagnetic radiation induces a linear
displacement of electric charge in the ion or atom, the operator OED transforms as x, y and z.
It is given by:

OED � �e
X
i

~ri (1.55)

Since both the operator and the f orbitals have u (ungerade, odd) symmetry, electric dipole
transitions are forbidden by the parity rule (see section below on Judd–Ofelt theory and
induced electric dipole transitions). The selection rules for these transitions are summarised
in Table 1.13.

The magnetic dipole operator OMD induces a rotational displacement of electric charge in
the ion or atom due to interaction with the magnetic component of the electromagnetic
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radiation. It transforms as Rx, Ry and Rz. Its expression is:

OMD � � eħ
2mc

X
i

~li � 2~si (1.56)

Since OMD has g (gerade, even) symmetry and the f orbitals u, magnetic dipole transitions
are allowed in centrosymmetric and noncentrosymmetric point groups. However, the
selection rules ΔJ= 0, 1 (but not 0↔ 0) are followed (Table 1.13), and so few magnetic
dipole transitions, such as the Eu3+ 5D0 ! 7F1 transition, are known.
Electric quadrupole transitions are also possible; despite the even parity of the electric

quadrupole operator, the intensity of these transitions is low, and they are less relevant for
the lanthanide ions. They will therefore not be addressed here [29].

1.3.9.4 Symmetries of the Terms

To help decide which transitions between energy levels of lanthanide ions are electric or
magnetic dipole allowed, depending on the symmetry in which the lanthanide ion is located,
it is useful to determine the symmetries of the terms split by the crystal field. This can be
done with the rotation formula (Equation 1.57).

χ Cn� � �
sin J � 1

2

� �
α

sin
α

2

(1.57)

In this equation, χ is the character of the symmetry operation Cn, and α the rotation angle.
For the identity operation χ(E)= 2J+ 1, which corresponds to the degeneracy of the term.
For the operations σ and i the characters are χ(σ)= –χ(C2) and χ(i)= –χ(E), respectively.
Using these formulas it is possible to determine the reducible representation Γ associated
with each term and, upon reduction into its irreducible components, utilising the reduction
formula (Equation 1.58), the symmetries of the individual crystal field split terms.

ai � 1
h

X
R
gR � χ�R�r � χ�R�i (1.58)

ai is the number of times the reducible representation Γr is contained in the irreducible
representation Γi, h is the order of the group, gR is the number of operations in each class R of
symmetry operations and χ is the character of the irreducible Γi or reducible representation
Γr for each class R.

Table 1.13 Selection rules for f-f transitions

Transition ΔS ΔL ΔJ

ED 0 �6 �6 (2,4 or 6 if J or J´ = 0)
MD 0 0 0, ±1
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If J is a half-integer, character tables for double groups are utilised for the reduction,
which contain the additional symmetry element R, defined as rotation by 2π and χ(α+
2π)=�χ(α) [54]. In addition to the symmetry elements of the common character tables, the
additional symmetry elements C2R (same character as C2), C

n�1
n (same character as Cn) and

Cn�m
n (same character as Cm

n ) are present.
For example, Eu(III) has the electronic configuration 4f 6 with the ground state multiplet

7F0,
7F1,

7F2,
7F3,

7F4,
7F5 and 7F6, in order of increasing energy. Under octahedral

symmetry O (order of the group h= 24) and utilising the rotation formula (Equation 1.57) it
can be shown that 7F3 transforms as the reducible representation Γr shown below.

O E 6C4 3C2 8C3 6C2

Γr 7 �1 �1 1 �1

Using the reduction formula (Equation 1.58), it can further be shown that Γr=A2+T1+T2

or Γr=Γ2+Γ4+Γ5 using Bethe’s notation. If the Oh group symmetry is used instead,
Γr=A2g+T1g+T2g, or Γr � Γ�2 � Γ�4 � Γ�5 using Bethe’s notation. The term splits into
seven levels, one of symmetry A2 (or A2g), three degenerate ones of symmetry T1 (or T1g)
and three of symmetry T2 (or T2g), consistent with the 2J +1= 7 degeneracy of the parent
term. A similar exercise for the 5D0 term shows that its Γr � Γ�1 . Inspection of
the multiplication tables indicates that the only transitions allowed are the magnetic dipole
transitions, which occur between terms with irreducible representation, which contain the
OMD, as required by Equation 1.54 and shown in Table 1.14. Therefore the 5D0 � 7F1
transition has a magnetic dipole allowed component. Other transitions are observed for
Eu(III) nonetheless, and those include induced electric dipole transitions, which will be
discussed in the following paragraph.

Complete multiplication tables can be found in the literature [30].
Similarly, it can be shown that the 2F5=2 term of Yb(III) transforms in D3 as the reducible

representation Γr displayed in Table 1.15.

Table 1.14 Multiplication table showing the selection rules for the Oh point group [30]

Oh Γ�1 Γ�2 Γ�3 Γ�4 Γ�5
Γ�1 �� �� �� Rx, Ry, Rz ��
Γ�2 �� �� �� �� Rx, Ry, Rz

Γ�3 �� �� �� Rx, Ry, Rz Rx, Ry, Rz

Γ�4 Rx, Ry, Rz �� Rx, Ry, Rz Rx, Ry, Rz Rx, Ry, Rz

Γ�5 �� Rx, Ry, Rz Rx, Ry, Rz Rx, Ry, Rz Rx, Ry, Rz

Table 1.15 Reducible representation of the 2F5=2 term of Yb(III) in D3 symmetry

D3́
a E R C3 C2

3 3C2 3C2R

C2
3R C3R

Γr 6 �6 0 0 0 0

a The double group D3́ is used instead of D3, as Yb(III) is a Kramer’s ion.
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After reduction Γr= 2Γ4+Γ5,6, which corresponds to two doubly degenerate levels with
symmetry Γ4 and two degenerate levels with symmetries Γ5 andΓ6, consistent with an overall
sixfold degeneracy which is not completely lifted by the crystal field, as Yb(III) is a Kramers’
ion. Analogously, the 2F7=2 term transforms as the reducible representation Γr= 3Γ4+Γ5,6.
Inspection of Table 1.16 above shows that transitions between these two terms are both

electric and magnetic dipole allowed as well as polarised, since they are allowed only in
certain directions. The transition between levels with Γ5,6 symmetry is allowed only in π
polarised spectra. A π-polarised spectrum is measured with the magnetic field perpendicular
and the electric field parallel to the crystallographic c axis. An α-spectrum, on the other
hand, is measured with both the magnetic and electric field vectors perpendicular to the
crystallographic c axis. Measurement of the σ-spectrum occurs with the magnetic field
parallel and the electric field perpendicular to the c axis. Polarised spectra yield useable
results only in uniaxial crystals, which have trigonal, tetragonal and hexagonal unit cells.

1.3.9.5 Intensity of the MD Transitions

The magnetic dipole strength of a transition between the initial and final states ψ i and ψ f

can be theoretically evaluated by determining the matrix elements of the dipole moment
operator OMD coupling the two states [40]. By re-writing Equation 1.56 without the
summation over all i electrons, OMD is given by

OMD � � eħ
2mec

�L̂ � 2Ŝ� (1.59)

Therefore, the strength of the magnetic dipole transition DMD is given by Equation 1.60.

DMD � ψ i

��OMD

��ψ f

	 
2 � e2ħ2

4m2
ec

2

���� lNSLJ��OMD

��lNS´L´J ´	 
2
(1.60)

After separating the quadratic term into expressions containing individually the total orbital
angular momentum operator L̂ and the total spin angular momentum operator Ŝ, it can be
shown that [55]

lNSLJ
��L̂��lNS´L´J ´	 
 � δSS´δLL´ ��1�S�L�J�1 L J S

J L 1

� �
��2L � 1��2J � 1�2L�L � 1��1=2

lNSLJ
��Ŝ��lNS´L´J ´	 
 � δSS´δLL´ ��1�S�L�J�1 S J L

J S 1

� �
��2S � 1��2J � 1�2S�S � 1��1=2

(1.61)

Table 1.16 Multiplication table showing the selection rules for the D3́ point group [30]

D3́ ED MD

Γ4 Γ5,6 Γ4 Γ5,6

Γ4 α, π, σ α, σ α, σ, π α, π
Γ5,6 α, σ π α, π σ
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Therefore, for MD transitions the following selection rules arise.

ΔS � 0

ΔL � 0

ΔJ � 0;�1; but 0 $ 0 forbidden

As there are three possible values for ΔJ, it can be shown that for:

1. ΔJ= 0, J= J´ and

lnSLJ
��L̂ � 2Ŝ

��lnS´L´J ´	 
 � g�J�J � 1��2J � 1��1=2

g � 1 � J�J � 1� � L�L � 1� � S�S � 1�
2J�J � 1�

g, the Landé factor, describes the magnetic moment of the ion.
2. J´ = J� 1

lnSLJ
��L̂ � 2Ŝ

��lnS´L´�J � 1�	 
 � 1
4J
�S � L � J � 1��S � L � J � 1��J � S � L��J� L � S�

� �1=2

3. J´ = J+ 1

lnSLJ
��L̂ � 2Ŝ

��lnS´L´�J � 1�	 
� 1
4J � 1

�S � L � J � 2��S � J� 1 � L��L � J� 1� S��S � L � J�
� �1=2

Representative values for dipole and oscillator strengths for selected MD allowed
Ln(III) transitions are summarised in Table 1.17.

Since MD allowed transitions are relatively independent of the geometry surrounding the
lanthanide ions, both ligand identity as well as coordination polyhedra do not influence
transition intensity appreciably.

Table 1.17 Dipole D and oscillator P strengths for MD allowed transitions for select Ln(III)

Ln(III) MD allowed
transition

E [cm�1] PMD

[10�8 Debye2]a
DMD

[10�6 Debye2]

Pr(III) 3H5  3H4 2300 9.76 90
Nd(III) 4I11=2  4I9=2 2000 14.11 15

Eu(III) 5D0  7F1 16 900 7.47 9.4

a 1 Debye= 1× 10�18 esu cm
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1.3.10 Induced Electric Dipole Transitions and Their Intensity – Judd–Ofelt Theory

Since the electric dipole operator has odd parity, electric dipole transitions are allowed
only between states of different parity, as mentioned before. Therefore, the electric dipole
operator must be combined with other odd-parity operators to enable transitions within
the f shell [56]. If the metal is present in a symmetry site without inversion symmetry, the
parity rule is no longer applicable and therefore electric dipole transitions can be
observed. However, even in centrosymmetric point groups, electric dipole transitions
can be observed, as vibronic coupling, which is coupling of the electronic and vibrational
wave functions, lifts the site symmetry. Alternatively, admixture of electronic states of
opposite parity, such as d orbitals, mediated by the crystal field, which was proposed
concurrently and independently by Brian Judd [8] and George Ofelt [9], can be invoked to
explain the intensity of these transitions. While arbitrary, a small participation of the d
orbitals can be seen as a small perturbation to the system, which results in new perturbed
wave functions φa and φb for the initial and final states, where the wave functions ψ
designated with α and β correspond to the orbitals of higher energy with opposite parity.

φa

	 �� � ψa

	 �� �X
β

ψa

��Hcf

��ψβ

	 

Ea � Eβ

ψβ

	 ��
��φb


 � ��ψb


 �X
β

ψβ

��Hcf

��ψb

	 

Eb � Eβ

��ψβ




By utilising these new wave functions, the dipole strength DED of the line corresponding to
the transition between the states a and b is given by Equation 1.62.

DED � φa

��OED

��φb

	 
2
� X

β

ψa

��Hcf

��ψβ

	 

ψβ

��OED

��ψb

	 

Ea � Eβ

� ψa

��OED

��ψβ

	 

ψβ

��Hcf

��ψb

	 

Eb � Eβ

( )" #2
(1.62)

In this expression, since OED is odd-parity and the states a and b have opposite parity to α
and β, those terms will not vanish. To prevent the terms involving the crystal field
Hamiltonian from vanishing, the Bk

q parameters have to be odd, with k= 1, 3, 5 and q� k.
The crystal field operator Hcf and electric dipole operator OED can be re-written as shown
below.

Hcf �
X
i

riC
1
q�θi;ϕi� (1.63)

OED �
X
t;p

At
p

X
i

rti�Ct
p�i (1.64)

Ck
q are the tensor operators introduced in Equation 1.31, which transform like the spherical

harmonics.
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Substitution of these expressions into Equation 1.62 leads to Equation 1.65.

DED �
X

p;t; even λ

��1�J�MJ�p�q�2λ � 1�At
p

1 λ t

q �p � q p

 !
J λ J ´

�MJ �p � q M ´
J

 !
1 λ t

l l´ l

( )

� ψa k Uλ k ψb

	 
 � Ξ�t; λ�

2
664

3
775
2

with

Ξ�t; λ� � 2
X
nl

�2l � 1��2l´ � 1���1�l�l´ � 1 λ t

l l´ l

( )
l 1 l´

0 0 0

 !
l t l´

0 0 0

 !

� �nl
��r��n´l´��nl��rtn´l´�

ΔEnl

(1.65)

In this expression λ= 1+ t, t is odd, At
p � Bt

p

rh it (Equation 1.29) are the static crystal field

parameters, with t® k and p® q and, for the 3j and 6j symbols to be different from zero and
therefore the dipole moment does not vanish, the following parameter values and selection
rules arise for induced electric dipole transitions:

λ � 2; 4; 6

t � 1; 3; 5

ΔJ � 6 �no 0$ 0�
ΔJ � 2; 4; 6 when J or J ´ � 0; otherwiseΔJ � 0;�1
ΔL � 6

ΔS � 0

Following some simplifications, such as the assumption that all Stark levels of the ground
state manifold are equally populated, and that the emission is isotropic, the dipole strength
can be simplified to Equation 1.66.

DED � e2
X

λ�2;4;6
Ωλ ψa Uλ

�� ��ψb

	 
�� ��2 (1.66)

Uλ are the tensors of the electric dipole operator of rank λ= 2, 4, 6, and the terms in brackets
are the doubly reduced matrix elements for intermediate coupling, which have been
determined by Carnall for all lanthanide aqua ions [25–28]. Some are summarised in
Table 1.18.

Ωλ are the Judd–Ofelt parameters in cm�1 [8,9,55].

Ωλ � �2λ � 1�X
p

X
t�1;3;5

��At
p

��2
�2t � 1�Ξ

2�t; λ� (1.67)
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The expression above shows that odd-order components of the crystal field and radial
integrals of 4fn wavefunctions and of perturbing wavefunctions of opposite parity comprise
these parameters. These parameters appear in the definition of the oscillator strength PED for
a particular induced electric dipole transition between and a and b, as shown in the equation
below [57].

PED�a $ b� � 8π2meν�n2 � 2�2
27hn�2J � 1�

X
λ�2;4;6

Ωλ ψa Uλ
�� ��ψb

	 
�� ��2 (1.68)

The Judd–Ofelt parameters can, in principle, be calculated; however, it is more common to
treat them as phenomenological parameters, which can be fitted from absorption or emission
spectra, through measurement of the experimental dipole strength as defined in Equation
1.48 and the use of the tabulated doubly reduced matrix elements with Equation 1.68. The
Judd–Ofelt parameters, as determined experimentally, are often given in units of 10�20 cm2.
Ω2 is strongly affected by dynamic coupling between the ligands and the lanthanide ion,
which is related to changes in the ligand-generated field due to the incident light. This
changing field in turn induces f-f transitions. Ω6 is strongly influenced by the rigidity of the
host the lanthanide is embedded in. In this static coupling model, the ligands generate a
crystal field potential of odd parity, which in turn induce 4f states of mixed parity. The
electric dipole component of the incident photons then induces transitions between these
states, but the ligands themselves are not affected by the incident radiation. The Ω4

parameters do not show specific trends and involve both dynamic and static coupling
mechanisms [57,58]. In general, if the host matrix is the same and the lanthanide ions are in
isostructural positions, a decrease of the Ωλ parameters along the series is expected, and is
indeed observed forΩ6, due to static coupling prevalence (Tables 1.19 and 1.20). In the case
of Ω4, the trend is less consistent, and, for Ω2 no trend is observed, as dynamic coupling is
prevalent.
The Judd–Ofelt theory does not estimate well transition intensities for Pr(III), as it is

likely that the 4f 15d1 configuration contributes significantly to the perturbation described in
φa and φb.

Table 1.18 Selected squares of doubly reduced matrix elements ψa Uλ
�� ��ψb

	 
�� ��2 for Eu(III) [26]
λ=2 λ= 4 λ=6

7F0 !
5D0 0 0 0
5D1 0 0 0
5D2 0.0008 0 0
5L6 0 0 0.0155

7F1 !
5D0 0 0 0
5D1 0.0026 0 0
5D2 0.0001 0 0
5L6 0 0 0.0090
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1.3.11 Transition Probabilities and Branching Ratios

The probability of an individual transition J↔J´ to occur is given by Equation 1.69.

A�J; J ´� � 64π4e2ν3

2h�2J � 1� χEDDED � χMDDMD

� �
(1.69)

The correction factors for dielectric medium, χ, used in this equation will depend on the
transitions being absorption or emission. Further, since individual transitions will have
different probabilities, it is possible to define a radiative branching ratio βR(J,J´), given by
Equation 1.70.

βR�J; J ´� � A�J; J ´�X
J

A�J; J ´� �
E�J; J ´�X
J

E�J; J ´� (1.70)

The radiative branching ratio can be calculated through the probabilities of the transitions,
or, in the case of emission, it can be determined experimentally from the emission spectra,
where E(J,J´) is the integrated emission spectrum of transition J↔J´ and

X
J

E�J; J ´� is the
integrated emission spectrum over all transitions.

Table 1.19 Judd–Ofelt parameters for aqueous Ln(IIII) ions in acidic solutions [31]

Ln Ω2 [10
�20 cm2] Ω4 [10

�20 cm2] Ω6 [10
�20 cm2]

Pr 32.6 5.7 32.0
Nd 0.93 5.00 7.91
Sm 0.91 4.13 2.70
Eu 1.46 6.66 5.40
Gd 2.56 4.70 4.73
Tb 0.004 7.19 3.45
Dy 1.50 3.44 3.46
Ho 0.36 3.14 3.07
Er 1.59 1.95 1.90
Tm 0.80 2.08 1.86

Table 1.20 Judd–Ofelt parameters for Nd(III) in selected environments [57]

Nd Ω2 [10
�20 cm2] Ω4 [10

�20 cm2] Ω6 [10
�20 cm2]

Aqua 0.93± 0.3 5.0±0.3 7.9±0.4
Nitrate 9.2±0.4 5.4±0.3 7.7±0.45
Acetylacetonate in DMF 24.5 0.71 9.1
Acetylacetonate in MeOH/EtOH 15.7 0.73 7.4
Dibenzoylacetonate in MeOH/EtOH 34.1 2.5 9.1
Bromide 180 9 9
Iodide 275 9 9
YAG 0.2 2.7 5.0
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In the case of emission, A(J,J´) is also known as Einstein’s coefficient of spontaneous
emission, and the sum of all probabilities for all radiative transitions is equal to the inverse
of the radiative rate constant, kR, in turn the reciprocal of the emissive state lifetime, τR.

βR�J; J ´� � A�J; J ´�X
J

A�J; J ´� �
A�J; J ´�
kR

� τRA�J; J ´� (1.71)

Werts and co-workers [59] demonstrated that for the purely magnetic dipole transition of
Eu3+, 5D0 ! 7F1, the equation above can be rearranged to

1
τR
� A�5D0 ! 7F1�n3 E�5D0 ! 7FJ�

E�5D0 ! 7F1�
� �

(1.72)

and A�5D0 ! 7F1� � 14:65 s�1 is the spontaneous emission probability of the purely
magnetic dipole transition in vacuo, which was calculated through Equation 1.69 above.
For other lanthanide ions, Equation 1.72 can be re-written as Equation 1.73.

1
τR
� 2303

8πcn2ν2

NA

�2J � 1�
�2J ´ � 1� ∫ε�ν�dν (1.73)

R
ε�ν�dν is the integrated absorption spectrum of the transition in molar absorptivity as a

function of wavenumber.
Werts and co-workers tested the validity of these calculations by comparing experimental

and calculated parameters for well-studied systems, the europium salts of dipicolinic
acid [59]. They found an error of about 15% between experimentally determined and
calculated branching ratios and radiative lifetimes.

1.3.12 Hypersensitive Transitions

Hypersensitive transitions are electric dipole transitions whose shape and intensity display
large dependence on the point group symmetry of the metal ion, as well as on the pH,
temperature, and ligand type. These transitions obey the following selection rules.

��ΔS�� � 0
��ΔL�� � 2

��ΔJ�� � 2

Table 1.21 below summarises hypersensitive transitions observed for the different
lanthanides. These transitions are usually observed for systems that display large values
of U2 and therefore Ω2 and comparatively small and symmetry-independent values of Ω4

and Ω6 [13].
While over the years several explanations have been proposed for hypersensitivity,

including symmetry arguments, vibronic, charge-transfer and electric-quadrupole transi-
tion contributions [57,58], the most successful to date has been the dynamic coupling
mechanism proposed by Mason et al. [60]. These authors suggest that the intensity of the
hypersensitive transitions results from a non-zero electric dipole transition, which arises
from an electric dipole in the ligand induced by the f orbitals of the metal ion. By analogy
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with Equation 1.62 it is possible to write Equation 1.74 for the electric dipole moment μ.

A0B0 μj jAaB0h i �X
b

2Eb

�E2
b � E2

a� A0Aa Vj jB0Bbh iμ0b (1.74)

hA0| and |Aai are the ground and excited states of the metal ion, respectively, which perturb
the hB0| ground and |Bbi excited states of the ligand. μ0b is the electric dipole moment of the
ligand transition influenced by the Coulombic interaction V between the f orbitals and
the ligand B. The dynamic coupling contributes then to the Ω2 Judd–Ofelt parameter, if the
crystal field potential has crystal field terms with k odd (k= 3).

1.3.13 Emission Efficiency and Rate Constants

The emission efficiency is given by the quantum yield of luminescence ϕ, which is simply
the ratio of emitted photons, pem, to photons absorbed by the sample, pabs, as shown in
Equation 1.75.

ϕ � pem
pabs

(1.75)

Table 1.21 Hypersensitive transitions of the Ln(III) ions observed in absorption or emission
spectra [13,57]

Ln(III) Transition λ [nm]

Pr 3F2 � 3H4 1920
Nd 4G5=2 � 4I9=2 578

2H9=2;
4F5=2 � 4I9=2 806

4G7=2;
3K13=2 � 4I9=2 521

Sm 4F1=2;
4F3=2 � 6H5=2 1560

Eu 5D2 � 7F0 465
5D1 � 7F1 535
5D0 � 7F2 613

Gd 6P5=2;
6P7=2 � 8S7=2 308

Dy 6F11=2 � 6H15=2 1300
4G11=2;

4I15=2 � 6H15=2 427

Ho 3H6 � 5I8 361
5G6 � 5I8 452

Er 4G11=2 � 4I15=2 379
2H11=2 � 4I15=2 521

Tm 1G4 � 3H6
469

3H4 � 3H6 787
3F4 � 3H6 1695
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In the case of lanthanides, following direct excitation of the metal ion, the efficiency of
emission is called the intrinsic emission efficiency ϕLn

Ln, which is directly related to the
overall rate at which the emissive state is depopulated through radiative R and non-radiative
NR pathways, kexp= kR+ kNR, and the radiative rate constant, kR, or their corresponding
lifetimes, τexp and τR, as shown in Equation 1.76.

ϕLn
Ln � kR

kR � kNR
� kR
kexp
� τexp

τR
(1.76)

The experimentally observed excited state lifetime reflects the contribution of all processes,
which lead to the deactivation of the excited state, both radiative and non-radiative.
Equation 1.72 above relates the radiative lifetime to the magnetic dipole-allowed

transition of Eu(III). It is therefore straightforward to determine experimentally, for this
ion, τR and therefore the intrinsic emission efficiency.

1.4 Sensitisation Mechanism

1.4.1 The Antenna Effect

Due to the forbidden nature of the f-f transitions, for many applications the direct excitation
of the lanthanide ion is not desirable, as it requires the use of high intensity sources. It is
therefore more efficient to promote the emission through an appended sensitiser or antenna.
The antenna effect, illustrated in Fig. 1.10, relies on a sensitiser to harvest energy, for
example through photon absorption, which leads to population of an excited single state 1S.
In the presence of a heavy atom, intersystem crossing ISC is facilitated, which leads to
population of a triplet excited state 3T. This state is usually long-lived and is capable
therefore of energy transfer ET to the lanthanide ion’s emissive f* excited state. If the
emissive state is too close in energy to the triplet state, back energy transfer BT occurs.

Figure 1.10 Modified Jablonski diagram illustrating the antenna effect. Abs – absorption, Fl –
fluorescence, Ph – phosphorescence, L – luminescence, ISC – intersystem crossing, ET – energy
transfer, BT – back energy transfer, NR – non-radiative deactivation, 1S – first excited singlet
state, 3T – lowest excited triplet state, GS – ground state, f* – emissive f excited state
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Fluorescence Fl and phosphorescence Ph compete for deactivation of the singlet and triplet
states, respectively, and non-radiative processes NR can also lead to deactivation of all
excited states. Although it is usually assumed that the energy transfer occurs from the triplet
excited state due to the favourable intersystem crossing in the presence of the heavy
atom [61], several cases have been reported in which the energy is transferred from the
singlet excited state directly to the emissive f level [62–66]. It has also been shown that
sensitisation through metal to ligand charge-transfer states of coordinated transition metal
complexes or intra-ligand charge-transfer states are viable pathways to promote lanthanide-
centred emission [67].

The overall efficiency of sensitised emission ϕL
Ln is given by Equation 1.77.

ϕL
Ln � ϕISC � ϕET � ϕLn

Ln � ϕsens � ϕLn
Ln (1.77)

The efficiency of intersystem crossing ϕISC and efficiency of energy transfer ϕET combine to
give the efficiency of sensitisation ϕsens. In the case of europium, where τr (Equation 1.72)
can be obtained from the integrated emission spectrum and ϕLn

Ln can be estimated with
Equation 1.76, it is therefore possible to experimentally determine the efficiency of
sensitisation ϕsens.

1.4.1.1 Singlet and Triplet States and Intersystem Crossing

The relative positions of the singlet and triplet states are important, as they can help
influence the efficiency of the intersystem crossing as well as the energy transfer and
magnitude of back energy transfer. Work done by Latva et al. [68] indicates that the position
of the lowest triplet state relative to the emissive state of the Ln(III) ion is important for the
efficiency of the energy transfer. From their survey of 41 different ligands, these authors
conclude that for Eu(III) good energy transfer happens if the triplet to f* gap is in the range
2500–4000 cm�1, with emission efficiencies in the range 15–38%. Nonetheless, an emission
efficiency of 12% was observed for a complex with ΔE≈ 9000 cm�1, and an emission
efficiency of 11% was observed for another complex with ΔE≈ 1000 cm�1. In the case of
Tb(III), emission efficiencies in the range 21–58% were observed forΔE in the range 2000–
4300 cm�1. For this metal ion, with its emissive 5D4 state at 20 450 cm

�1, substantial energy
back-transfer was observed if ΔE� 1850 cm�1.

In the course of the pioneering work on sensitised luminescence, Yuster and Weissman
studied the promotion of intersystem crossing due to spin–orbit coupling with heavy
atoms [69]. They found that dibenzoylmethanide coordinated to the non-emissive La, Lu
and Gd displayed different efficiencies of intersystem crossing, as seen by different ratios of
fluorescence versus phosphorescence intensity and changes in phosphorescence lifetimes,
directly related to spin–orbit coupling and to the magnetic moment of the lanthanide ion.

The lifetime τ�1S� of the singlet excited state is given by Equation 1.78.

τ�1S� � 1
kNR � kFl � kISC

(1.78)

kNR is the non-radiative decay rate, while kFl is the radiative decay rate and kISC the rate
of intersystem crossing (see Fig. 1.10). The lifetime τ�3T � of the triplet excited state is
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given by Equation 1.79.

τ�3T � � 1
kŃR � kPh

(1.79)

kŃR is the non-radiative decay from the triplet state back to the singlet ground state and kPh is
the radiative phosphorescence decay rate.
The emission efficiencies for the fluorescence ϕFl and phosphorescence ϕPh can then be

defined by Equations 1.80 and 1.81, respectively.

ϕFl � kFl
kNR � kISC � kFl

(1.80)

ϕPh � kPh � kISC
�kNR � kPh�Ph�kISC � kFl � kNR�Fl (1.81)

1.4.1.2 Ligand to Metal Ion Energy Transfer Mechanisms

As mentioned above, sensitised luminescence is the process by which lanthanide ions emit
following absorption of light by a coordinated ligand. During this process the absorbed
energy has to be transferred to the lanthanide ion. In general, energy transfer between a
donor D and an acceptor A will follow one of two mechanisms, one involving electron
transfer, also called Dexter energy transfer [70], and the other involving dipole–dipole
exchange, also known as Förster energy transfer [71], represented in Fig. 1.11 [72].
Due to the lack of overlap of the 4f orbitals with the ligand orbitals, it is generally

accepted that the energy transfer occurs through the latter for lanthanide ions and so only the
Förster mechanism will be briefly discussed in the following. However, in the case of
lanthanide ions such as europium and ytterbium, which are easily reduced, electron transfer
and phonon-assisted mechanisms have been invoked [73,74].

Förster or Dipole–Dipole Energy Transfer For systems in which molecules are present
that are capable of absorbing and emitting energy and energy transfer is observed between
donors and acceptors, Förster postulated that the decrease in excitation of the donor occurs
in parallel with the increase in emission of the acceptor, which is consistent with a dipole–
dipole exchange mechanism. This is different from a sequential process in which the donor
emits and its emission wavelengths are reabsorbed by the acceptor [71].
When donors and acceptors are present in the system and the former are de-excited while

the latter absorb energy, the rate constant for energy transfer kD-A between donor D and
acceptor A is given by Equation 1.82.

kD�A � 161:9 κ2

π6n4Nτ0R6 ∫
∞

0

f D ν� �εA ν� � dν
ν4
� 161:9 κ2

π6n4Nτ0R6 J ν� � (1.82)

R is the distance between donorD and acceptor A, n is the refractive index of the solution, τ0
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is the natural radiative lifetime of the donor in absence of the acceptor and N is Avogadro’s
number. The overlap integral J(ν) is determined through integration of the absorption
spectrum of the acceptor εA(ν), in units of cm�1 M�1, and the emission spectrum of the
donor fD(ν), in units of cm�1, normalised to an area of 1.0. Finally, since dipole–dipole
interactions depend on molecular orientation, the orientation factor κ is present in this
equation [71]. For solutions in which molecular positions are averaged due to random
motion, κ2 is usually equal to two-thirds [75]. From this equation it follows that the energy
transfer depends on R�6, and therefore Förster energy transfer is a long-range interaction
which requires overlap of emission spectrum of the donor and absorption spectrum of the
acceptor, but does not require physical contact between the donor and acceptor. The Förster
distance R0, which is the maximum donor–acceptor distance for which energy transfer is
possible, is given by Equation 1.83 [71].

R0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3000τ0c2J ν� �
8π4n2N2ν20

6

s
(1.83)

Here, c is the speed of light in a vacuum and ν0 is the frequency at which absorption and
emission spectra intersect.
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Figure 1.11 Pictorial representation of energy transfer between donor D and acceptor A
through the Förster and Dexter mechanisms
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1.4.2 Non-Radiative Quenching

As shown in Fig. 1.11, non-radiative quenching pathways are present at several places of the
sensitisation process and lead to overall low emission efficiency of sensitised emission.
In the case of intrinsic Ln(III) ion emission, the smaller the gap between the emissive state
and the highest sublevel of the ground-state manifold, the easier it is to non-radiatively
quench the emission. This is shown in Fig. 1.12 for Eu(III), where the gap between the 5D0
and the 7F6 states is approximately 12 000 cm�1. It follows that the quenching of the
emissive state is easily accomplished through three vibrational quanta of the O-H bond,
with a vibrational energy of 3600 cm�1. If instead the bond is O–D, with a vibrational energy
of 2200 cm�1, five vibrational quanta are needed, and the process is less efficient.
Table 1.22 summarises the number of phonons necessary to bridge the gap ΔE between

an excited Ln(III) state and the highest energy sub-level of the ground-state manifold for
H2O and D2O.

Figure 1.12 Radiative transitions of Eu(III) and non-radiative quenching through O-H and
O-D bonds

Table 1.22 Vibrational bridging of theΔE gap for different Ln(III) ions byO-HandO-Dbonds
and typical radiative lifetimes τ

Number of phonons τ [ms]

Ln ΔE [cm�1] OH OD H2O D2O

Gd 32100 9 15 2.3 n.a.
Tb 14 800 4 7 0.47 3.8
Eu 12 300 3−4 5−6 0.11 4.1
Dy 8850 2−3 3−4 0.002 0.06
Sm 7400 2 3 0.002 0.08

44 Luminescence of Lanthanide Ions in Coordination Compounds and Nanomaterials



3GCH01 09/11/2014 13:44:51 Page 45

Horrocks and co-workers took advantage of this and derived an empirical equation,
which allows the determination of the number of water molecules coordinated to Eu(III) and
Tb(III) by comparing emission lifetimes in water and deuterated water. This will be further
discussed in Chapter 2 [76,77].

In addition to O-H other bonds, such as N-H (3300 cm�1) and C-H (2900 cm�1), also
contribute to vibrational quenching of Ln(III)-centred emission.

Since the non-radiative quenching processes are vibrationally mediated, they are
temperature dependent and the temperature dependence of the rate constants is described
by an Arrhenius-like Equation 1.84.

ln kexp � k0
� � � ln A � EA

RT
(1.84)

k0 is the rate constant at 0K, which can be approximated by the rate constant measured
experimentally at 4 K or 77K and EA is the activation energy for the quenching process.
This can be used, for example, to determine the activation energy for energy back-transfer
from the emissive Ln(III) state to the triple state. Charbonnière et al. determined an
activation energy of 180 cm�1 for the back-transfer from the 5D4 level of Tb(III) to the
triplet state of a calixarene located at 2400 cm�1 [78]. The authors hypothesise that the back-
transfer is mediated by Ln–O vibrations in the complex, which occur at around 220 cm�1.
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Abbreviations

1S first excited singlet state
3T lowest excited triplet state
A acceptor
AOM angular overlap model
BT back energy transfer
CN coordination number
D donor
ED electric dipole
ET energy transfer
Fl fluorescence
GS ground state
ISC intersystem crossing
L luminescence
Ln lanthanide
MD magnetic dipole
NR non-radiative
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PCEM point charge electrostatic model
Ph phosphorescence
R radiative
SOM simple overlap model
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