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1
Preliminaries

1.1 Boolean Circuits

A Boolean variable is a variable whose value can only be either 0 (false) or 1 (true) or
unknown. Every Boolean variable has two literals. They are the normal form and the
negation/complement of the variable. The negation of a variable always evaluates to the
opposite value of the variable. Suppose v is a Boolean variable; then its negation is v̄. When
v is 1, v̄ is 0; when v is 0, v̄ is 1. The literals of variable v are then v and v̄.

A function consisting of Boolean variables is known as a Boolean function. It is a mapping
between Boolean spaces. For example, the function f : Bm → Bn is a mapping between
the input space of m Boolean variables and the output space of n Boolean variables. We
use f(x1, x2, . . . , xm−1, xm) to indicate the input variables or input values of the Boolean
function f .
The mapping between Boolean spaces is achieved by Boolean operators. The basic Boolean

operators (operations) AND, OR, NOT, XOR, and XNOR are denoted as ·,+,∼,⊕, and ⊕̄,
respectively, in this book. We may omit the symbol · for clarity. The behavior of the basic
operators is listed in Table 1.1. Complex Boolean operators can be derived from these basic
operators. In fact, only AND and NOT, or only OR and NOT, are sufficient to derive all other
Boolean operations.
An example of Boolean function is f(a, b) = a · b, which computes the logical conjunction

of variables a and b. A Boolean function may contain literals. The Boolean function
f(a, b) = a · b̄ is such an example that computes the logical conjunction of variable a and the
negation of variable b. It may be surprising for readers who are not familiar with Boolean alge-
bra to see a function f(a, b, c) = a · b. This function is actually nothing special but is normal
and valid. It just means that, among the three variables, the value of variable c is “don’t care.”
That is to say, the value of c can be either 0 or 1, and f(a, b, c) = ab = abc̄+ abc. For another
example, the function f(a, b, c) = (a+ b) can be expanded into f(a, b, c) = (a+ b) =
(a+ b)c̄+ (a+ b)c.

Observability don’t cares (ODCs) (Damiani and De Micheli 1990) of a Boolean variable
are the conditions under which the variable is not affecting any of the primary outputs. For
example, if an input i of an AND gate has the controlling value 0, its set of other inputs J are
unobservable no matter what values they have. The ODC of J is ī. Satisfiability don’t cares
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2 Boolean Circuit Rewiring

Table 1.1 Behavior of the basic Boolean operators

Operator When will it returns true?

AND · All of its operands are true
OR + Any one of its operands is true
NOT ∼ Its operand is false
XOR ⊕ Both of its operands have different values
XNOR ⊕̄ Both of its operands have the same values

(SDCs) of a circuit node represent the local input patterns at the node that cannot be generated
by the node’s fanins. As a trivial example of SDC, if we connect all inputs of a two-input AND
gate to a common signal, the values of its inputs can never be {1, 0} or {0, 1}.
Many rules in ordinary algebra, such as commutative addition and multiplication, associa-

tive addition and multiplication, and variable distribution, can be applied into Boolean algebra.
Therefore, function f(a, b, c) = (a+ b) = (a+ b)c̄+ (a+ b)c = ac̄+ bc̄+ ac+ bc. For
each of the conjunction term, it can be expanded by connecting it with all combinations of
the literals of the missing variables by conjunction. Some additional important rules that are
obeyed in Boolean algebra only include a · a = a and a+ a = a. Regarding our example, it
can be expanded as follows:

f(a, b, c) = (a+ b)

= (a+ b)c̄+ (a+ b)c

= (ac̄+ bc̄) + (ac+ bc)

= (abc̄+ ab̄c̄+ abc̄+ ābc̄) + (abc+ ab̄c+ abc+ ābc)

= abc̄+ ab̄c̄+ ābc̄+ abc+ ab̄c+ ābc

Other rules can be derived from the basic rules easily. Since Boolean algebra is a vast area
of study, even the elementary topics can cover a whole book. In this book, we shall not cover
every detail.
Boolean functions can be realized in hardware using logic gates. A Boolean circuit or

Boolean network is composed of gates and implements some Boolean functions. We simply
use circuits or networks to represent Boolean circuits when the meaning is clear in the context.
Figure 1.1 illustrates the logic gates implementing the basic Boolean functions. An example
circuit composed of AND, OR, and NOT gates is shown in Figure 1.2(b). For gate e, its inputs
are a and b, so it is implementing the function a+ b. Regarding gate f , its function is a · b̄.
A less famous Boolean operator is the cofactor. The cofactor of a Boolean func-

tion f(x1, x2, . . . , xn−1, xn) with respect to a variable xk is f |xk
= f(x1, x2, . . . ,

xk−1, 1, xk+1, . . . , xn−1, xn). Suppose f = ab+ c, f |a = b+ c, and f |c = ab+ 1 = 1.
Similarly, the cofactor of a Boolean function f(x1, x2, . . . , xn−1, xn) with respect to the
complement of a variable xk is f |xk

= f(x1, x2, . . . , xk−1, 0, xk+1, . . . , xn−1, xn). Suppose
f = ab+ c, f |ā = 0 · b+ c = c. Every Boolean function can be expressed using Shannon’s
expansion. For example, f(x) = x · f |x + x̄ · f |x̄. An example of a function with multiple
inputs is f(x, y, z, w) = xyf |xy + x̄yf |x̄y + xȳf |xȳ + x̄ȳf |x̄ȳ
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Figure 1.1 Basic logic gates
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Figure 1.2 Directed acyclic graph representation of a circuit. (a) A directed acyclic graph; (b) a Boolean
circuit
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4 Boolean Circuit Rewiring

In general, Boolean circuits can be represented by directed acyclic graphs (DAGs). A DAG
is a kind of graph in which two vertices may be connected by an edge pointing to either one
of the vertices, such that there are no loops in the graph. With regard to a circuit, the vertices
of its corresponding graph represent its gates, and the edges of the graph represent its wires.
An example of a DAG is illustrated in Figure 1.2(a). It is in fact the corresponding graph
representation for the circuit in Figure 1.2(b). For instance, the node e in the graph represents
the OR gate e, and the edge from a to e corresponds to the target wire indicated in the figure.
Each node in a DAG is therefore associated with a Boolean function. Edges pointing toward

a node are known as the fanins of the node, and edges leaving the node are known as the fanouts
of the node. The source of a wire connecting s to d has a fanout d, and the destination of the
wire d has a fanin s. The number of fanins of a node n is called the in-degree/fanin number of
the node, which is denoted by d+(n). Similarly, the number of fanouts of node n is called the
out-degree/fanout number and is denoted by d−(n). A special case of a DAG is the and-inverter
graph (AIG) in which every node represents an AND gate. The values of the edges may be
complemented to implement all Boolean functions.
In a circuit, the nodes whose fanin numbers are 0 or have no fanins are known as primary

inputs (PIs), and the nodes whose fanout numbers are 0 or have no fanouts are known as
primary outputs (POs).
Node a is a transitive fanin (TFI) of node b if there is a path from node a to node b. Node

b is said to be a transitive fanout (TFO) of node a if is reachable from node a. All TFIs of a
node form the TFI cone of the node, and all TFOs of a node form the TFO cone of the node.
The most famous problem regarding Boolean circuits is the Boolean satisfiability prob-

lem. It is always known as the SAT problem. This problem is to determine whether there is
any assignment of values to the variables of a given Boolean function such that the function
can be evaluated to 1. For the Boolean function f(a, b, c) = a · b+ c, the value assignments
{a = 1, b = 1, c = 0} allows f to evaluate to 1. It is a solution that satisfies this SAT problem
instance.

1.2 Redundancy and Stuck-at Faults

Central to rewiring techniques is the concept of logic redundancy. Logic redundancy means
that, in a circuit, the logic value of a connection or a component has no effect on the output
values of the circuit. The occurrence of logic redundancy is usually due to some design errors
or faults such as manual design errors, shorting of two wires, or fabrication defects in the
circuit. In practice, this kind of redundancy is always targeted for removal so as to minimize
the chip area and to improve the yield of the chip. However, there are other kinds of redundancy
that are added into circuits intentionally, for example, for fault tolerance.
Engineers have developed the stuck-at fault model to manipulate logic redundancy. As a

matter of fact, many types of faults in Boolean circuits can be modeled as stuck-at faults (Jha
and Kundu 1990). In this model, the value of a faulty wire is stuck at a constant, either 0 (sa0)
or 1 (sa1). The input vectors that can test a fault are the test vectors of the fault. If there is
no test vector for a fault, the fault is regarded as untestable. Testing an untestable fault always
results in value assignment conflicts at some locations. Regarding an AND (OR) gate input
wire, it is sufficient to certify the untestability of its stuck-at-1 (stuck-at-0) fault to ensure
that it is redundant. Its stuck-at-1 (stuck-at-0) is called a noncontrolling-value stuck-at fault,
otherwise called a controlling-value stuck-at fault. The names come from the fact that the
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Figure 1.4 Untestable stuck-at fault

controlling value of an AND (OR) gate is 0 (1). In general, a gate’s input wire is redundant
if its noncontrolling-value stuck-at fault cannot be tested. For an input of a gate that has no
noncontrolling value (e.g., XOR), it is redundant only if both its noncontrolling-value and
controlling-value stuck-at faults are untestable.
In this book, the notation sa0(s → d) (sa1(s → d)) will be used to denote the stuck-at-0

(stuck-at-1) of the wire s → d whose source node (source) is s and destination node (sink)
is d. TheD-notation is also adopted to denote stuck-at-0 as 1/0(D) and stuck-at-1 as 0/1(D̄).

Figure 1.3 shows a stuck-at fault. The notation 1/0 on the wire means that the normal or
correct value of the wire is 1 and is 0 when a fault occurs. To observe such a fault, we need
to find a path in the circuit so that the faulty value can be propagated to at least one primary
output and the difference between the normal and faulty values can be observed by the users.
The value assignment {a = 0, b = 1, c = 1, d = 1} is called a test vector for propagating and
observing the 1/0 fault in the figure. If such a path does not exist for a stuck-at fault, then we
can say that there is no test vector for the fault and the fault is undetectable. The wire is thus
redundant and can be removed without changing the behavior of the circuit.
An untestable stuck-at fault is shown in Figure 1.4. The value of the input b has to be set to 1

because wewant to assign 1 as the correct value of the stuck-at-0 fault. On the other hand, it has
to be set to 0 simultaneously so as to make the fault observable. This is obviously impossible.
If b is either 1 or 0, the correct and faulty values at the circuit’s output are either 1/1 or 0/0.
This means the stuck-at-0 fault cannot be tested at all. From this analysis, we know that the
corresponding wire f → g is redundant.
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6 Boolean Circuit Rewiring

1.3 Automatic Test Pattern Generation (ATPG)

Automatic Test Pattern Generation (ATPG), as its name implies, is a circuit testing method
and is commonly applied to prove the testability of the stuck-at faults in a given circuit. With
regard to a stuck-at fault, it works by feeding the circuit with the essential input test vectors
and comparing the output values obtained with those of a fault-free circuit. If there is any
difference, the fault is observable.
There are two steps in ATPG, namely (i) fault excitation (activation) and (ii) fault propaga-

tion. Fault excitation for a wire’s stuck-at fault is to derive a test vector such that the wire can
have distinguishable correct and faulty values. Regarding the stuck-at-0 fault in Figure 1.3, the
output of gate f has to be 1 to differentiate the correct and faulty values at wire f → g. Then,
the values of both c and d have to be 1 because an AND gate can only output 1 when all of its
inputs are 1. The partial test vector is {c = 1, d = 1}.
Fault propagation means propagating a fault to some outputs of the circuit. If the upper input

of the OR gate g (wire e → g) is assigned with 1, the circuit’s output (g’s output) will be 1/1
and the fault is not observable. Hence, wire e → g should be assigned with 0 instead. The value
of wire e → g will be 0 when one of the inputs of gate e is 0. Therefore, all the test vectors for
the stuck-at-0 fault in this example are as follows: (i) {a = 0, b = 0, c = 1, d = 1} (ii) {a =
0, b = 1, c = 1, d = 1} (iii) {a = 1, b = 0, c = 1, d = 1}. Alternatively, the test vectors can
be represented by (i) {a = ∗, b = 0, c = 1, d = 1} (ii) {a = 0, b = ∗, c = 1, d = 1}, where ∗
means that the value can be either 0 or 1.

1.4 Dominators

A dominator (Kirkland and Mercer 1987) of a wire w is a gate through which all paths from
w to any primary outputs must go. For instance, in Figure 1.4, the set of dominators of b is
g because the paths from b to all the circuit outputs (i) b → e → g → (ii) b → f → g → all
pass through g. Side inputs of a dominator with respect to a wire w are its inputs that are not
lying in w’s fault propagation paths. In Figure 1.4, the upper input (e → g) of the dominator
g with respect to the stuck-at fault sa0(f → g) is a side input. The gates e and f are not the
dominators of sa0(f → g).

Algorithm 1.1: Procedure Cal_Dominators
input : a circuit C
begin1

N ← primary inputs of C;2

foreach node n ∈ N do3

Dn ← n ; /* Dn is the set of dominators of n */4

S ← ∅;5

foreach fanout fn of n do6

S ← S ∩ Cal_Dominators(fn);7

Dn ← Dn ∪ S;8

end9
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Preliminaries 7

By definition, a gate is a dominator of itself because it must pass through itself. Every fanout
of the gate has its own set of dominators. The common set of the dominators of the gate’s
fanouts represents the gates through which all fanouts must pass. Hence, the dominators of
all the gates in a circuit can be calculated recursively. The recursive algorithm is listed in
Algorithm 1.1.
For a given fault, determining all test vectors to detect the fault is proven to be extremely

complex. The notion of dominators is always applied in fault propagation so that the process
is more systematic and efficient. In fault propagation, the side inputs of each of the dominators
with respect to a fault are assigned with the noncontrolling value of the dominator. This is how
e → g is assigned with 0 in the example illustrated in Figure 1.4. Further logic implications
are then carried out based on the assigned values.

1.5 Mandatory Assignments and Recursive Learning

The fundamental component of ATPG is the logic implication procedure during fault excitation
and propagation. Given a Boolean network and a set of preassigned values on some of the gates,
logic implication is to derive the values of unassigned gates such that they are the same for any
given input to the network that results in the preassigned values. Referring to the example in
Figure 1.3, gate e is the first gate whose output is preassigned with a value (1). The unassigned
gates are then determined by evaluating the truth tables of the gates with assigned values and
the connectivity of the circuit.
The simplest form of logic implication is called direct implication, which is simply to evalu-

ate the truth tables of the gates with assigned values to determine unknown values. However, it
is not always possible to derive unknown values by truth table evaluation. For example, when
the output of an AND gate is 0, which of its inputs should have the value 0? The problem of
logic implication is actually much more complex than one would imagine.
The set of values on the unassigned gates found by the implication procedure is called

the mandatory assignments (MAs) (or necessary assignments). A mandatory assignment is a
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Figure 1.5 Unjustified AND/OR gates and their complete justifications
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8 Boolean Circuit Rewiring

“forced mandatory assignment” (FMA) if it turns an originally testable fault to be untestable
when its opposite value is used instead. With reference to Figure 1.3, the mandatory
assignments for testing stuck-at-0 fault on wire f → g are {a = 0, b = 1, c = 1, d = 1, e = 0,
f = 1}. Among these mandatory assignments, the mandatory assignment b = 1 is not an
FMA because the fault sa0(f → g) is still testable even if b = 0 is used.
Recursive learning (Kunz and Pradhan 1994) or indirect implication is a method to derive

all mandatory assignments for a given configuration of value assignments on the Boolean
network. It is based on propagating the values found by direct implication according to the
structural information of the circuit. The following gives several definitions that are needed in
the recursive learning method:

1. Given a gate g that has at least one specified input or output signal, g is unjustified if there
are one or more unspecified input or output signals of g for which it is possible to find
a combination of value assignments that yield a conflict at g. Otherwise, g is justified.
Figure 1.5 shows all possible assignments on a two-input AND gate and a two-input OR
gate that will result in the gate becoming unjustified. In the figure, x represents unknown
values and ∗ represents either 0 or 1.

2. A set of signal assignments J = {f1 = V1, f2 = V2, . . . , fn = Vn}, where f1, . . . , fn are
the unspecified input or output signals of an unjustified gate g, is called the justifications
for g if the combination of value assignments in J makes g justified.

3. Let C∗ be the set of all justifications for gate g. The set of complete justification C for g is
defined to be C = {Ji|Ji ⊆ J∗, ∀J∗ ∈ C∗}.

An example of recursive learning in action is illustrated in Figure 1.6. Suppose the output of
gate g3 is assigned with 1 (Figure 1.6(a)). After propagation of this value and justification of
the assigned values, there can be three outcomes as shown in Figure 1.6(b)–(d). The common
value assignment among the three configurations is {b = 1}. As a result, we can conclude
that g3 = 1 implies b = 1 (Figure 1.6(e)). If only direct implication is applied and without
recursive learning, this result cannot be obtained.
The level of logic implication is deeper through the use of recursive learning. As we shall

see in later chapters, a deeper logic implication level is beneficial to rewiring techniques in
that it allows them to identify more alternative wires. This has been proven by experimental
results. The tradeoff of adopting recursive learning in rewiring algorithms is an increase in the
runtime.

1.6 Graph Theory and Boolean Circuits

Definition 1.1 Given a Boolean network, a cut-set (or cut for brevity) of a given node set Ov

is a set of nodes not in Ov and are directly connected to the boundary nodes of Ov .

It can be understood that any path passing throughOv to any POmust also go through some
nodes in the cut-set. Basically, a cut of a given node v can be considered a “cutting boundary”
of nodes that partitions the fanout cone of v from the node v. A cut-set is K-feasible if the
cardinality of the cut-set is no more than K.
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Figure 1.6 Example of recursive learning. (a) Gate with preassigned value: g3; (b) justifications (I)
for g1, g2, and g3; (c) justifications (II) for g1, g2, and g3; (d) justifications (III) for g1, g2, and g3;
(e) values implied from g3 = 1
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10 Boolean Circuit Rewiring

Based on the above definitions, a blocking cut (B-cut) is defined as follows:

Definition 1.2 Given a network, a cut-set S is a blocking cut (B-cut) of a node set if every
path from the node set to the primary outputs must go through one and only one node in S.
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