
Chapter 1

Introducing Python
In This Chapter
� The history of Python

� What people use Python for

� Useful concepts for Python programming

Welcome to Python! If you’re the type of person who wants to know
what you’re getting into, this chapter is for you. We give you a quick

history of Python and its community of developers. You find out what Python
is and isn’t good for (the “is” section is much longer than the “isn’t” section)
and the most important principles of good Python programming. If you’re
new to programming, you’ll see how it’s very similar to a task you’re proba-
bly familiar with.

The Right Tool for the Job
Python is a general-purpose, high-level language that can be extended and
embedded (included in applications as a tool for writing macros). That
makes Python a smart choice for many programming problems, both small
and large, and not so good for a couple of computing tasks.

Good uses of Python
Python is ideal for projects that require quick development. It supports
multiple programming philosophies, so it’s good for programs that require
flexibility. The many packages and modules already written for Python pro-
vide versatility and save you time.

05_778648 ch01.qxp 8/7/06 10:46 PM Page 7

CO
PYRIG

HTED
 M

ATERIA
L

8 Part I: Getting Started

The story of Python
Guido van Rossum created Python and is affec-
tionately bestowed with the title “Benevolent
Dictator For Life” by the Python community.
In the late 1980s, Guido liked features of several
programming languages, but none of them
had all the features he wanted. Specifically,
he wanted a language that had the following
features:

� Scripting language: A script is a program
that controls other programs. Scripting lan-
guages are good for quick development and
prototyping because they’re good at pass-
ing messages from one component to
another and at handling fiddly stuff like
memory management so that the program-
mer doesn’t have to. Python has grown
beyond scripting languages, which are
used mostly for small applications. The
Python community prefers to call Python a
dynamic programming language.

� Indentation for statement grouping: Python
specifies that several statements are part
of a single group by indenting them. The
indented group is called a code block. Other
languages use different syntax or punctua-
tion for statement grouping. For example, the
C programming language uses { to begin
an instruction and } to end it. Indentation is
considered good practice in other languages
also, but Python was one of the first to
enforce indentation. Indentation makes code
easier to read, and code blocks set off with
indentation have fewer begin/end words and
punctuation to accidentally leave out (which
means fewer bugs).

� High-level data types: Computers store
everything in 1s and 0s, but humans need to
work with data in more complex forms,
such as text. A language that supports such
complex data is said to have high-level data
types. A high-level data type is easy to

manipulate. For example, Python strings
can be searched, sliced, joined, split, set to
upper- or lowercase, or have white space
removed. High-level data types in Python,
such as lists and dicts (which can store
other data types), encompass much more
functionality than in other languages.

� Extensibility: An extensible programming
language can be added to. These languages
are very powerful because additions make
them suitable for multiple applications and
operating systems. Extensions can add data
types or concepts, modules, and plug-ins.
Python is extensible in several ways. A core
group of programmers works on modifying
and improving the language, while hundreds
of other programmers write modules for spe-
cific purposes.

� Interpreted: Interpreted languages run
directly from source code that humans gen-
erate (whereas programs written in com-
piled languages, like C++, must be translated
to machine code before they can run).
Interpreted languages run more slowly
because the translation takes place on the
fly, but development and debugging is faster
because you don’t have to wait for the com-
piler. Interpreted languages are easier to run
on multiple operating systems. In the case of
Python, it’s easy to write code that works on
multiple operating systems — with no need
to make modifications.

People argue over whether Python is an
interpreted or compiled language. Although
Python works like an interpreted language
in many ways, its code is compiled before
execution (like Java), and many of its capa-
bilities run at full machine speed because
they’re written in C — leaving you free to
focus on making your application work.

05_778648 ch01.qxp 8/7/06 10:46 PM Page 8

9Chapter 1: Introducing Python

Fast development
High-level features make Python a wise alternative for prototyping and fast
development of complex applications:

� Python is interpreted, so writing working programs and fixing mistakes
in programs is fast.

Programs written in interpreted languages can be tested as soon as
they’re written, without waiting for the code to compile.

� Python takes care of such fiddly details as memory management behind
the scenes.

� Python has debugging features built in.

All these features make Python a good language for

� Off-the-cuff, quick programming

� Prototyping (sketching the design basics of complex programs, or test-
ing particular solutions)

� Applications that change, build on themselves, and add new features
frequently

Programming styles
Python is a multi-paradigm language (meaning it supports more than one
style or philosophy of programming). This makes it good for applications
that benefit from a flexible approach to programming. Python includes tools
for the following paradigms:

� Object-oriented programming (OOP for short) is one of the popular pro-
gramming styles that Python supports. OOP breaks up code into individ-
ual units that pass messages back and forth.

Object-oriented programming is good for applications that have multiple
parts that need to communicate with each other.

� Python has features in common with the following languages. If you
know these languages, you’ll find features in Python that you are familiar
with, making Python easier to learn:

Guido began writing Python during his Christmas
vacation in 1989, and over the next year,
he added to the program based on feedback
from colleagues. He released it to the public in

February 1991 by posting to the Usenet system of
newsgroups. In Guido’s words: “The rest is in the
Misc/HISTORY file.”

05_778648 ch01.qxp 8/7/06 10:46 PM Page 9

• Java: An object-oriented language especially for applications used
over networks

• Perl: A procedural language used for text manipulation, system
administration, Web development, and network programming

• Tcl: Used for rapid prototyping, scripting, GUIs, and testing

• Scheme: A functional programming language (a language that
focuses on performing actions and calculations by using functions.

For more about functions, see Chapter 11, and for an intro to func-
tional programming, see Chapter 16.)

Python For Dummies includes a brief introduction to object-oriented program-
ming (Chapter 13), an overview of using Python for Web development (Chap-
ter 20), and tips for scripting and testing.

Versatility
Python modules (collections of features for performing tasks) let Python
work with

� Multiple operating systems and user interfaces

With Python For Dummies, you can write and run programs on Windows,
Mac, and Unix (including Linux). Python programmers have also written
code for other operating systems, from cell phones to supercomputers.

� Special kinds of data (such as images and sound)

Python comes with dozens of built-in modules. New modules can be written
in either Python or C/C++.

10 Part I: Getting Started

Companies that use Python
The main portal to Python and the Python com-
munity is www.python.org. This portal con-
tains a page that lists some companies that use
Python, including

� Yahoo! (for Yahoo! Maps)

� Google (for its spider and search engine)

� Linux Weekly News (published by using a
Web application written in Python)

� Industrial Light & Magic (used in the pro-
duction of special effects for such movies
as The Phantom Menace and The Mummy
Returns).

Other commercial uses include financial appli-
cations, educational software, games, and busi-
ness software.

05_778648 ch01.qxp 8/7/06 10:46 PM Page 10

Convenience
Most programming languages offer convenience features, but none boast the
combination of convenience and power that Python offers:

� Python can be embedded in other applications and used for creating
macros. For example, Python is embedded in Paint Shop Pro 8 and later
versions as a scripting language.

� Python is free for anyone to use and distribute (commercially or non-
commercially), so any individual or company can use it without paying
license fees.

� Python has powerful text manipulation and search features for appli-
cations that process a lot of text information.

� You can build large applications with Python, even though it doesn’t
check programs before they run. In technical terms, Python doesn’t
have compile-time checking. Python supports large programs by connect-
ing multiple modules together and bundling them into packages. Each
module can be built and tested separately.

� Python includes support for testing and error-checking both of indi-
vidual modules and of whole programs.

Sometimes, Python isn’t so hot
Python by itself isn’t best for applications that need to interface closely with
the computer’s hardware because

� Python is an interpreted language.

Interpreted languages are slower than compiled languages.

� Python is a high-level language that uses many layers to communicate
with the computer’s hardware and operating system.

Python might not be the best choice for building the following types of appli-
cations and systems:

� Graphics-intensive applications, such as action games

But some games use Python because specialized modules can be written
to interface with hardware. The pygame module is one such package.
(Modern computers are extremely fast, which means it’s more important
to be able to write clean code quickly than to get maximum speed out of
the software, except for the most graphics-intensive games.)

� The foundations of an operating system

11Chapter 1: Introducing Python

05_778648 ch01.qxp 8/7/06 10:46 PM Page 11

Cooking Up Programs
Writing programs is a little bit like working with recipes. For example, you can

� Write a recipe to make bread from scratch.

In Python, you can build a program from scratch, writing all your own
code and using only Python’s basic built-in functions.

� Use the product of one recipe in another recipe (for example, a recipe
for turkey stuffing uses bread as an ingredient).

After you write program that performs a basic task, you can insert it into
other programs the same way you add any ingredient to a recipe.

� Buy premade bread.

Python comes with many modules, which are sets of programs other
people have written that you can plug into your program, just like you
can buy bread at the store without baking it yourself.

Python’s even better than bread because most Python modules are free!

12 Part I: Getting Started

The Python developer community
Python has attracted many users who collec-
tively make up a community that

� Promotes Python

� Discusses and implements improvements
to the language

� Supports newcomers

� Encourages standards and conventions that
improve Python’s usability and readability

� Values simplicity and fun (after all, Python
was named after Monty Python, the British
comedy troupe)

The Python community has created words to
describe its philosophy:

Pythonic identifies code that meets the fol-
lowing criteria:

It includes interfaces or features that work
well with Python.

It makes good use of Python idioms (stan-
dard ways of performing tasks) and shows
understanding of the language.

Unpythonic code is roughly translated
from other languages instead of following
Python’s philosophy.

Pythonistas are knowledgeable users of
Python (especially users who promote the
language).

05_778648 ch01.qxp 8/7/06 10:46 PM Page 12

When you write a program, you are telling the computer to do something.
Python For Dummies gives you step-by-step instructions that help you under-
stand how to write the way a computer “thinks.”

Unlike you, computers are pretty stupid. They can do only a few things. All
the actions that humans make them do are the result of the computer’s doing
those few things over and over, in different combinations, very quickly.

Training your assistant
Imagine that you’re a baker, and you have taken on an apprentice baker
who is as stupid as a computer. If you want to show your baker how to make
bread from scratch, you need to start with very basic steps. You’ve already
started by putting warm water and sugar in a small bowl. Then you and the
apprentice have this conversation:

You: “Add a package of yeast.”

Apprentice: “I can’t find a package of yeast.”

You: “The refrigerator is over there. Inside the refrigerator is a little pack-
age labeled Yeast. Go get it.”

The apprentice gets the package and says, “Now what?”

You: “Put the package in the bowl.”

The apprentice puts the package in the bowl.

You: “Hey! Open the package first!”

By now you might doubt the wisdom of hiring an apprentice baker who needs
to be told things that seem completely obvious to you. But if you persevere,
you’ll come out ahead. If this apprentice is like a computer, then after finally
figuring out how to bake bread in your kitchen, your new baker will be able to
prepare 100 loaves a minute!

Combining ingredients
When your apprentice baker knows all the procedures involved in baking
bread, such as finding the ingredients on the shelves, finding the pots and
pans, mixing ingredients, and operating the oven, you can assign other tasks
that use those same procedures. Baking bread involves combining ingredi-
ents in a bowl, so if you need to combine ingredients for another recipe, the

13Chapter 1: Introducing Python

05_778648 ch01.qxp 8/7/06 10:46 PM Page 13

apprentice already knows how to do that. So when you want to explain how
to make cookies, you can now say “combine sugar, flour, and butter in a
bowl” without explaining where to find the bowls or the sugar.

In Python, after you’ve written a program to do something, you can import it
into another program. So the more you work with Python, the faster you’ll be
able to write programs.

14 Part I: Getting Started

05_778648 ch01.qxp 8/7/06 10:46 PM Page 14

