
Chapter 1

Beyond Number Crunching: The 
Art and Science of Data Analysis

In This Chapter
▶ Realizing your role as a data analyst

▶ Avoiding statistical faux pas

▶ Delving into the jargon of Stats II

Because you’re reading this book, you’re likely familiar with the basics 
of statistics and you’re ready to take it up a notch. That next level 

involves using what you know, picking up a few more tools and techniques, 
and finally putting it all to use to help you answer more realistic questions 
by using real data. In statistical terms, you’re ready to enter the world of the 
data analyst.

In this chapter, you review the terms involved in statistics as they pertain to 
data analysis at the Stats II level. You get a glimpse of the impact that your 
results can have by seeing what these analysis techniques can do. You also 
gain insight into some of the common misuses of data analysis and their 
effects.

Data Analysis: Looking 
before You Crunch

It used to be that statisticians were the only ones who really analyzed data 
because the only computer programs available were very complicated to use, 
requiring a great deal of knowledge about statistics to set up and carry out 
analyses. The calculations were tedious and at times unpredictable, and they 
required a thorough understanding of the theories and methods behind the 
calculations to get correct and reliable answers.
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10 Part I: Tackling Data Analysis and Model-Building Basics 

Today, anyone who wants to analyze data can do it easily. Many user-
friendly statistical software packages are made expressly for that purpose — 
Microsoft Excel, Minitab, SAS, and SPSS are just a few. Free online programs 
are available, too, such as Stat Crunch, to help you do just what it says — 
crunch your numbers and get an answer.

Each software package has its own pros and cons (and its own users and pro-
testers). My software of choice and the one I reference throughout this book 
is Minitab, because it’s very easy to use, the results are precise, and the soft-
ware’s loaded with all the data-analysis techniques used in Stats II. Although 
a site license for Minitab isn’t cheap, the student version is available for rent 
for only a few bucks a semester.

 The most important idea when applying statistical techniques to analyze data 
is to know what’s going on behind the number crunching so you (not the 
computer) are in control of the analysis. That’s why knowledge of Stats II is so 
critical.

 Many people don’t realize that statistical software can’t tell you when to use 
and not to use a certain statistical technique. You have to determine that on 
your own. As a result, people think they’re doing their analyses correctly, but 
they can end up making all kinds of mistakes. In the following sections, I give 
examples of some situations in which innocent data analyses can go wrong 
and why it’s important to spot and avoid these mistakes before you start 
crunching numbers.

Bottom line: Today’s software packages are too good to be true if you don’t 
have a clear and thorough understanding of the Stats II that’s underneath 
them.

Remembering the old days
In the old days, in order to determine whether 
different methods gave different results, you 
had to write a computer program using code 
that you had to take a class to learn. You had 
to type in your data in a specific way that the 
computer program demanded, and you had to 
submit your program to the computer and wait 
for the results. This method was time consum-
ing and a general all-around pain.

The good news is that statistical software pack-
ages have undergone an incredible evolution in 
the last 10 to 15 years, to the point where you 
can now enter your data quickly and easily in 
almost any format. Moreover, the choices for 
data analysis are well organized and listed in 
pull-down menus. The results come instantly 
and successfully, and you can cut and paste 
them into a word-processing document without 
blinking an eye.
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Nothing (not even a straight 
line) lasts forever
Bill Prediction is a statistics student studying the effect of study time on 
exam score. Bill collects data on statistics students and uses his trusty 
software package to predict exam score using study time. His computer 
comes up with the equation y = 10x + 30, where y represents the test score 
you get if you study a certain number of hours (x). Notice that this model is 
the equation of a straight line with a y-intercept of 30 and a slope of 10.

So Bill predicts, using this model, that if you don’t study at all, you’ll get a 
30 on the exam (plugging x = 0 into the equation and solving for y; this point 
represents the y-intercept of the line). And he predicts, using this model, that 
if you study for 5 hours, you’ll get an exam score of y = (10 * 5) + 30 = 80. So, 
the point (5, 80) is also on this line.

But then Bill goes a little crazy and wonders what would happen if you 
studied for 40 hours (since it always seems that long when he’s studying). 
The computer tells him that if he studies for 40 hours, his test score is 
predicted to be (10 * 40) + 30 = 430 points. Wow, that’s a lot of points! 
Problem is, the exam only goes up to a total of 100 points. Bill wonders 
where his computer went wrong.

But Bill puts the blame in the wrong place. He needs to remember that there are 
limits on the values of x that make sense in this equation. For example, because 
x is the amount of study time, x can never be a number less than zero. If you 
plug a negative number in for x, say x = –10, you get y = (10 * –10) + 30 = –70, 
which makes no sense. However, the equation itself doesn’t know that, nor 
does the computer that found it. The computer simply graphs the line you 
give it, assuming it’ll go on forever in both the positive and negative directions.

 After you get a statistical equation or model, you need to specify for what 
values the equation applies. Equations don’t know when they work and when 
they don’t; it’s up to the data analyst to determine that. This idea is the same 
for applying the results of any data analysis that you do.

Data snooping isn’t cool
 Statisticians have come up with a saying that you may have heard: “Figures 

don’t lie. Liars figure.” Make sure that you find out about all the analyses that 
were performed on a data set, not just the ones reported as being statistically 
significant.

05_466469-ch01.indd   11 7/24/09   9:30:46 AM



12 Part I: Tackling Data Analysis and Model-Building Basics 

Suppose Bill Prediction (from the previous section) decides to try to pre-
dict scores on a biology exam based on study time, but this time his model 
doesn’t fit. Not one to give in, Bill insists there must be some other factors 
that predict biology exam scores besides study time, and he sets out to find 
them.

Bill measures everything from soup to nuts. His set of 20 possible variables 
includes study time, GPA, previous experience in statistics, math grades in 
high school, and whether you chew gum during the exam. After his multitude 
of various correlation analyses, the variables that Bill found to be related 
to exam score were study time, math grades in high school, GPA, and gum 
chewing during the exam. It turns out that this particular model fits pretty 
well (by criteria I discuss in Chapter 5 on multiple linear regression models).

But here’s the problem: By looking at all possible correlations between his 20 
variables and exam score, Bill is actually doing 20 separate statistical analy-
ses. Under typical conditions that I describe in Chapter 3, each statistical 
analysis has a 5 percent chance of being wrong just by chance. I bet you can 
guess which one of Bill’s correlations likely came out wrong in this case. And 
hopefully he didn’t rely on a stick of gum to boost his grade in biology.

 Looking at data until you find something in it is called data snooping. Data 
snooping results in giving the researcher his five minutes of fame but then 
leads him to lose all credibility because no one can repeat his results.

No (data) fishing allowed
Some folks just don’t take no for an answer, and when it comes to analyzing 
data, that can lead to trouble.

Sue Gonnafindit is a determined researcher. She believes that her horse can 
count by stomping his foot. (For example, she says “2” and her horse stomps 
twice.) Sue collects data on her horse for four weeks, recording the percent-
age of time the horse gets the counting right. She runs the appropriate sta-
tistical analysis on her data and is shocked to find no significant difference 
between her horse’s results and those you would get simply by guessing.

Determined to prove her results are real, Sue looks for other types of analy-
ses that exist and plugs her data into anything and everything she can find 
(never mind that those analyses are inappropriate to use in her situation). 
Using the famous hunt-and-peck method, at some point she eventually stum-
bles upon a significant result. However, the result is bogus because she tried 
so many analyses that weren’t appropriate and ignored the results of the 
appropriate analysis because it didn’t tell her what she wanted to hear.
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Funny thing, too. When Sue went on a late night TV program to show the 
world her incredible horse, someone in the audience noticed that whenever 
the horse got to the correct number of stomps, Sue would interrupt him and 
say “Good job!” and the horse quit stomping. He didn’t know how to count; 
all he knew to do was to quit stomping when she said “Good job!”

 Redoing analyses in different ways in order to try to get the results you want 
is called data fishing, and folks in the stats biz consider it to be a major no-no. 
(However, people unfortunately do it all too often to verify their strongly held 
beliefs.) By using the wrong data analysis for the sake of getting the results 
you desire, you mislead your audience into thinking that your hypothesis is 
actually correct when it may not be.

Getting the Big Picture: 
An Overview of Stats II

Stats II is an extension of Stats I (introductory statistics), so the jargon fol-
lows suit and the techniques build on what you already know. In this section, 
you get an introduction to the terminology you use in Stats II along with a 
broad overview of the techniques that statisticians use to analyze data and 
find the story behind it. (If you’re still unsure about some of the terms from 
Stats I, you can consult your Stats I textbook or see my other book, Statistics 
For Dummies (Wiley), for a complete rundown.)

Population parameter
 A parameter is a number that summarizes the population, which is the entire 

group you’re interested in investigating. Examples of parameters include the 
mean of a population, the median of a population, or the proportion of the 
population that falls into a certain category.

Suppose you want to determine the average length of a cellphone call among 
teenagers (ages 13–18). You’re not interested in making any comparisons; 
you just want to make a good guesstimate of the average time. So you want to 
estimate a population parameter (such as the mean or average). The popu-
lation is all cellphone users between the ages of 13 and 18 years old. The 
parameter is the average length of a phone call this population makes.
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Sample statistic
Typically you can’t determine population parameters exactly; you can only 
estimate them. But all is not lost; by taking a sample (a subset of individuals) 
from the population and studying it, you can come up with a good estimate 
of the population parameter. A sample statistic is a single number that sum-
marizes that subset.

For example, in the cellphone scenario from the previous section, you select 
a sample of teenagers and measure the duration of their cellphone calls over 
a period of time (or look at their cellphone records if you can gain access 
legally). You take the average of the cellphone call duration. For example, the 
average duration of 100 cellphone calls may be 12.2 minutes — this average 
is a statistic. This particular statistic is called the sample mean because it’s 
the average value from your sample data.

Many different statistics are available to study different characteristics of a 
sample, such as the proportion, the median, and standard deviation.

Confidence interval
A confidence interval is a range of likely values for a population parameter. A 
confidence interval is based on a sample and the statistics that come from 
that sample. The main reason you want to provide a range of likely values 
rather than a single number is that sample results vary.

For example, suppose you want to estimate the percentage of people who eat 
chocolate. According to the Simmons Research Bureau, 78 percent of adults 
reported eating chocolate, and of those, 18 percent admitted eating sweets 
frequently. What’s missing in these results? These numbers are only from 
a single sample of people, and those sample results are guaranteed to vary 
from sample to sample. You need some measure of how much you can expect 
those results to move if you were to repeat the study.

This expected variation in your statistic from sample to sample is measured 
by the margin of error, which reflects a certain number of standard deviations 
of your statistic you add and subtract to have a certain confidence in your 
results (see Chapter 3 for more on margin of error). If the chocolate-eater 
results were based on 1,000 people, the margin of error would be approxi-
mately 3 percent. This means the actual percentage of people who eat choco-
late in the entire population is expected to be 78 percent, ± 3 percent (that is, 
between 75 percent and 81 percent).
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Hypothesis test
A hypothesis test is a statistical procedure that you use to test an existing 
claim about the population, using your data. The claim is noted by Ho (the 
null hypothesis). If your data support the claim, you fail to reject Ho. If your 
data don’t support the claim, you reject Ho and conclude an alternative 
hypothesis, Ha. The reason most people conduct a hypothesis test is not to 
merely show that their data support an existing claim, but rather to show 
that the existing claim is false, in favor of the alternative hypothesis.

The Pew Research Center studied the percentage of people who turn to ESPN 
for their sports news. Its statistics, based on a survey of about 1,000 people, 
found that in 2000, 23 percent of people said they go to ESPN; in 2004, only 20 
percent reported going to ESPN. The question is this: Does this 3 percent reduc-
tion in viewers from 2000 to 2004 represent a significant trend that ESPN 
should worry about?

To test these differences formally, you can set up a hypothesis test. You 
set up your null hypothesis as the result you have to believe without your 
study, Ho = No difference exists between 2000 and 2004 data for ESPN viewer-
ship. Your alternative hypothesis (Ha) is that a difference is there. To run a 
hypothesis test, you look at the difference between your statistic from your 
data and the claim that has been already made about the population (in Ho), 
and you measure how far apart they are in units of standard deviations.

With respect to the example, using the techniques from Chapter 3, the 
hypothesis test shows that 23 percent and 20 percent aren’t far enough apart 
in terms of standard deviations to dispute the claim (Ho). You can’t say the 
percentage of viewers of ESPN in the entire population changed from 2000 to 
2004.

 As with any statistical analysis, your conclusions can be wrong just by chance, 
because your results are based on sample data, and sample results vary. In 
Chapter 3 I discuss the types of errors that can be made in conclusions from a 
hypothesis test.

Analysis of variance (ANOVA)
ANOVA is the acronym for analysis of variance. You use ANOVA in situations 
where you want to compare the means of more than two populations. For 
example, you want to compare the lifetimes of four brands of tires in number 
of miles. You take a random sample of 50 tires from each group, for a total of 
200 tires, and set up an experiment to compare the lifetime of each tire, and 
record it. You have four means and four standard deviations now, one for 
each data set.
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Then, to test for differences in average lifetime for the four brands of tires, 
you basically compare the variability between the four data sets to the 
variability within the entire data set, using a ratio. This ratio is called the 
F-statistic. If this ratio is large, the variability between the brands is more than 
the variability within the brands, giving evidence that not all the means are 
the same for the different tire brands. If the F-statistic is small, not enough 
difference exists between the treatment means compared to the general vari-
ability within the treatments themselves. In this case, you can’t say that the 
means are different for the groups. (I give you the full scoop on ANOVA plus 
all the jargon, formulas, and computer output in Chapters 9 and 10.)

Multiple comparisons
Suppose you conduct ANOVA, and you find a difference in the average life-
times of the four brands of tire (see the preceding section). Your next ques-
tions would probably be, “Which brands are different?” and “How different 
are they?” To answer these questions, use multiple-comparison procedures.

A multiple-comparison procedure is a statistical technique that compares 
means to each other and finds out which ones are different and which ones 
aren’t. With this information, you’re able to put the groups in order from 
those with the largest mean to those with the smallest mean, realizing that 
sometimes two or more groups were too close to tell and are placed together 
in a group.

Many different multiple-comparison procedures exist to compare individual 
means and come up with an ordering in the event that your F-statistic does 
find that some difference exists. Some of the multiple-comparison procedures 
include Tukey’s test, LSD, and pairwise t-tests. Some procedures are better 
than others, depending on the conditions and your goal as a data analyst. I 
discuss multiple-comparison procedures in detail in Chapter 11.

 Never take that second step to compare the means of the groups if the ANOVA 
procedure doesn’t find any significant results during the first step. Computer 
software will never stop you from doing a follow-up analysis, even if it’s wrong 
to do so.

Interaction effects
An interaction effect in statistics operates the same way that it does in the 
world of medicine. Sometimes if you take two different medicines at the same 
time, the combined effect is much different than if you were to take the two 
individual medications separately.
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 Interaction effects can come up in statistical models that use two or more vari-
ables to explain or compare outcomes. In this case you can’t automatically 
study the effect of each variable separately; you have to first examine whether 
or not an interaction effect is present.

For example, suppose medical researchers are studying a new drug for 
depression and want to know how this drug affects the change in blood pres-
sure for a low dose versus a high dose. They also compare the effects for 
children versus adults. It could also be that dosage level affects the blood 
pressure of adults differently than the blood pressure of children. This type 
of model is called a two-way ANOVA model, with a possible interaction effect 
between the two factors (age group and dosage level). Chapter 11 covers this 
subject in depth.

Correlation
The term correlation is often misused. Statistically speaking, the correlation 
measures the strength and direction of the linear relationship between two 
quantitative variables (variables that represent counts or measurements 
only).

 You aren’t supposed to use correlation to talk about relationships unless the 
variables are quantitative. For example, it’s wrong to say that a correlation 
exists between eye color and hair color. (In Chapter 14, you explore associa-
tions between two categorical variables.)

Correlation is a number between –1.0 and +1.0. A correlation of +1 indicates 
a perfect positive relationship; as you increase one variable, the other one 
increases in perfect sync. A correlation of –1.0 indicates a perfect negative 
relationship between the variables; as one variable increases, the other one 
decreases in perfect sync. A correlation of zero means you found no linear 
relationship at all between the variables. Most correlations in the real world 
fall somewhere in between –1.0 and +1.0; the closer to –1.0 or +1.0, the stron-
ger the relationship is; the closer to 0, the weaker the relationship is.

Figure 1-1 shows a plot of the number of coffees sold at football games in 
Buffalo, New York, as well as the air temperature (in degrees Fahrenheit) at 
each game. This data set seems to follow a downhill straight line fairly well, 
indicating a negative correlation. The correlation turns out to be –0.741; 
number of coffees sold has a fairly strong negative relationship with the tem-
perature of the football game. This makes sense because on days when the 
temperature is low, people get cold and want more coffee. I discuss correla-
tion further, as it applies to model building, in Chapter 4.
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Linear regression
After you’ve found a correlation and determined that two variables have a 
fairly strong linear relationship, you may want to try to make predictions for 
one variable based on the value of the other variable. For example, if you 
know that a fairly strong negative linear relationship exists between coffees 
sold and the air temperature at a football game (see the previous section), 
you may want to use this information to predict how much coffee is needed 
for a game, based on the temperature. This method of finding the best-fitting 
line is called linear regression.

Many different types of regression analyses exist, depending on your situa-
tion. When you use only one variable to predict the response, the method 
of regression is called simple linear regression (see Chapter 4). Simple linear 
regression is the best known of all the regression analyses and is a staple in 
the Stats I course sequence.

However, you use other flavors of regression for other situations.

 ✓ If you want to use more than one variable to predict a response, you use 
multiple linear regression (see Chapter 5).

 ✓ If you want to make predictions about a variable that has only two 
outcomes, yes or no, you use logistic regression (see Chapter 8).

 ✓ For relationships that don’t follow a straight line, you have a technique 
called (no surprise) nonlinear regression (see Chapter 7).
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Chi-square tests
Correlation and regression techniques all assume that the variable being 
studied in most detail (the response variable) is quantitative — that is, the 
variable measures or counts something. You can also run into situations 
where the data being studied isn’t quantitative, but rather categorical — that 
is, the data represent categories, not measurements or counts. To study 
relationships in categorical data, you use a Chi-square test for independence. 
If the variables are found to be unrelated, they’re declared independent. If 
they’re found to be related, they’re declared dependent.

Suppose you want to explore the relationship between gender and eating 
breakfast. Because each of these variables is categorical, or qualitative, you 
use a Chi-square test for independence. You survey 70 males and 70 females 
and find that 25 men eat breakfast and 45 do not; for the females, 35 do eat 
breakfast and 35 do not. Table 1-1 organizes this data and sets you up for the 
Chi-square test for this scenario.

Table 1-1 Table Setup for the Breakfast and Gender Question

Do Eat Breakfast Don’t Eat 

Breakfast

Total

Male 25 45 70

Female 35 35 70

 A Chi-square test first calculates what you expect to see in each cell of the 
table if the variables are independent (these values are brilliantly called the 
expected cell counts). The Chi-square test then compares these expected cell 
counts to what you observed in the data (called the observed cell counts) and 
compares them using a Chi-square statistic.

In the breakfast gender comparison, fewer males than females eat breakfast 
(25 ÷ 70 = 35.7 percent compared to 35 ÷ 70 = 50 percent). Even though you 
know results will vary from sample to sample, this difference turns out to 
be enough to declare a relationship between gender and eating breakfast, 
according to the Chi-square test of independence. Chapter 14 reveals all the 
details of doing a Chi-square test.

You can also use the Chi-square test to see whether your theory about what 
percent of each group falls into a certain category is true or not. For example, 
can you guess what percentage of M&M’S fall into each color category? You 
can find more on these Chi-square variations, as well as the M&M’S question, 
in Chapter 15.
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Nonparametrics
Nonparametrics is an entire area of statistics that provides analysis tech-
niques to use when the conditions for the more traditional and commonly 
used methods aren’t met. However, people sometimes forget or don’t bother 
to check those conditions, and if the conditions are actually not met, the 
entire analysis goes out the window, and the conclusions go along with it!

Suppose you’re trying to test a hypothesis about a population mean. The 
most common approach to use in this situation is a t-test. However, to use 
a t-test, the data needs to be collected from a population that has a normal 
distribution (that is, it has to have a bell-shaped curve). You collect data 
and graph it, and you find that it doesn’t have a normal distribution; it has a 
skewed distribution. You’re stuck — you can’t use the common hypothesis 
test procedures you know and love (at least, you shouldn’t use them).

This is where nonparametric procedures come in. Nonparametric procedures 
don’t require nearly as many conditions be met as the regular parametric 
procedures do. In this situation of skewed data, it makes sense to run a 
hypothesis test for the median rather than the mean anyway, and plenty of 
nonparametric procedures exist for doing so.

 If the conditions aren’t met for a data-analysis procedure that you want to 
do, chances are that an equivalent nonparametric procedure is waiting in the 
wings. Most statistical software packages can do them just as easily as the 
regular (parametric) procedures.

 Before doing a data analysis, statistical software packages don’t automatically 
check conditions. It’s up to you to check any and all appropriate conditions 
and, if they’re seriously violated, to take another course of action. Many times 
a nonparametric procedure is just the ticket. For much more information on 
different nonparametric procedures, see Chapters 16 through 19.
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